Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Metabolic reprogramming in polycystic kidney disease

A recent study shows that, like cancer cells, cells lacking the Pdk1 gene reprogram their metabolism to use aerobic glycolysis—the 'Warburg effect'. Targeting this pathway using a glucose analog that cannot be metabolized resulted in slower disease progression in mouse models of polycystic kidney disease. This work thus suggests a new potential therapeutic approach for autosomal dominant polycystic kidney disease (pages 488–493).

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pkd1-deficient cells use the Warburg effect to fuel their proliferation.

Katie Vicari

References

  1. Grantham, J.J. Am. J. Kidney Dis. 15, 110–116 (1990).

    Article  CAS  Google Scholar 

  2. Harris, P.C. & Watson, M.L. Nephrol. Dial. Transplant. 12, 1089–1090 (1997).

    Article  CAS  Google Scholar 

  3. Qian, F., Watnick, T.J., Onuchic, L.F. & Germino, G.G. Cell 87, 979–987 (1996).

    Article  CAS  Google Scholar 

  4. Brasier, J.L. & Henske, E.P. J. Clin. Invest. 99, 194–199 (1997).

    Article  CAS  Google Scholar 

  5. Henske, E.P. & McCormack, F.X. J. Clin. Invest. 122, 3807–3816 (2012).

    Article  CAS  Google Scholar 

  6. Hanahan, D. & Weinberg, R.A. Cell 100, 57–70 (2000).

    Article  CAS  Google Scholar 

  7. Nadasdy, T. et al. J. Am. Soc. Nephrol. 5, 1462–1468 (1995).

    CAS  PubMed  Google Scholar 

  8. Huang, J.L., Woolf, A.S. & Long, D.A. Pediatr. Nephrol. published online, doi:10.1007/s00467-012-2305-7 (19 September 2012).

  9. Wilson, P.D. Biochim. Biophys. Acta 1812, 1239–1248 (2011).

    Article  CAS  Google Scholar 

  10. Hanahan, D. & Weinberg, R.A. Cell 144, 646–674 (2011).

    Article  CAS  Google Scholar 

  11. Rowe, I. et al. Nat. Med. 19, 488–493 (2013).

    Article  CAS  Google Scholar 

  12. Warburg, O. Science 123, 309–314 (1956).

    Article  CAS  Google Scholar 

  13. Parkhitko, A. et al. Proc. Natl. Acad. Sci. USA 108, 12455–12460 (2011).

    Article  CAS  Google Scholar 

  14. Vander Heiden, M.G. Nat. Rev. Drug Discov. 10, 671–684 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth P Henske.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Priolo, C., Henske, E. Metabolic reprogramming in polycystic kidney disease. Nat Med 19, 407–409 (2013). https://doi.org/10.1038/nm.3140

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3140

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research