Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

GLP-1 receptor activation and Epac2 link atrial natriuretic peptide secretion to control of blood pressure

Abstract

Glucagon-like peptide-1 receptor (GLP-1R) agonists exert antihypertensive actions through incompletely understood mechanisms. Here we demonstrate that cardiac Glp1r expression is localized to cardiac atria and that GLP-1R activation promotes the secretion of atrial natriuretic peptide (ANP) and a reduction of blood pressure. Consistent with an indirect ANP-dependent mechanism for the antihypertensive effects of GLP-1R activation, the GLP-1R agonist liraglutide did not directly increase the amount of cyclic GMP (cGMP) or relax preconstricted aortic rings; however, conditioned medium from liraglutide-treated hearts relaxed aortic rings in an endothelium-independent, GLP-1R–dependent manner. Liraglutide did not induce ANP secretion, vasorelaxation or lower blood pressure in Glp1r−/− or Nppa−/− mice. Cardiomyocyte GLP-1R activation promoted the translocation of the Rap guanine nucleotide exchange factor Epac2 (also known as Rapgef4) to the membrane, whereas Epac2 deficiency eliminated GLP-1R–dependent stimulation of ANP secretion. Plasma ANP concentrations were increased after refeeding in wild-type but not Glp1r−/− mice, and liraglutide increased urine sodium excretion in wild-type but not Nppa−/− mice. These findings define a gut-heart GLP-1R–dependent and ANP–dependent axis that regulates blood pressure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Liraglutide reduces blood pressure and promotes aortic relaxation.
Figure 2: Liraglutide stimulates cardiac ANP secretion and elicits aortic vasodilation.
Figure 3: Liraglutide does not stimulate natriuresis or lower blood pressure in hypertensive Nppa−/− mice.
Figure 4: Liraglutide stimulates cardiomyocyte cAMP accumulation, Epac2 translocation and ANP secretion.
Figure 5: Liraglutide stimulates ANP secretion and lowers blood pressure in an Epac2-dependent manner.
Figure 6: ANP is essential for GLP-1–stimulated urinary sodium secretion and vascular smooth muscle relaxation.

Similar content being viewed by others

References

  1. Goldfine, A.B. Assessing the cardiovascular safety of diabetes therapies. N. Engl. J. Med. 359, 1092–1095 (2008).

    Article  CAS  Google Scholar 

  2. Fonseca, V.A., Zinman, B., Nauck, M.A., Goldfine, A.B. & Plutzky, J. Confronting the type 2 diabetes epidemic: the emerging role of incretin-based therapies. Am. J. Med. 123, S2–S10 (2010).

    Article  Google Scholar 

  3. Sivertsen, J., Rosenmeier, J., Holst, J.J. & Vilsboll, T. The effect of glucagon-like peptide 1 on cardiovascular risk. Nat. Rev. Cardiol. 9, 209–222 (2012).

    Article  CAS  Google Scholar 

  4. Fonseca, V.A. Ongoing clinical trials evaluating the cardiovascular safety and efficacy of therapeutic approaches to diabetes mellitus. Am. J. Cardiol. 108, 52B–58B (2011).

    Article  CAS  Google Scholar 

  5. Ussher, J.R. & Drucker, D.J. Cardiovascular biology of the incretin system. Endocr. Rev. 33, 187–215 (2012).

    Article  CAS  Google Scholar 

  6. Drucker, D.J. & Nauck, M.A. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 368, 1696–1705 (2006).

    Article  CAS  Google Scholar 

  7. Golpon, H.A., Puechner, A., Welte, T., Wichert, P.V. & Feddersen, C.O. Vasorelaxant effect of glucagon-like peptide7–36 amide and amylin on the pulmonary circulation of the rat. Regul. Pept. 102, 81–86 (2001).

    Article  CAS  Google Scholar 

  8. Nyström, T. et al. Effects of glucagon-like peptide-1 on endothelial function in type 2 diabetes patients with stable coronary artery disease. Am. J. Physiol. Endocrinol. Metab. 287, E1209–E1215 (2004).

    Article  Google Scholar 

  9. Chai, W. et al. Glucagon-like peptide 1 recruits microvasculature and increases glucose use in muscle via a nitric oxide–dependent mechanism. Diabetes 61, 888–898 (2012).

    Article  CAS  Google Scholar 

  10. Vilsbøll, T., Christensen, M., Junker, A.E., Knop, F.K. & Gluud, L.L. Effects of glucagon-like peptide-1 receptor agonists on weight loss: systematic review and meta-analyses of randomised controlled trials. Br. Med. J. 344, d7771 (2012).

    Article  Google Scholar 

  11. Crajoinas, R.O. et al. Mechanisms mediating the diuretic and natriuretic actions of the incretin hormone glucagon-like peptide-1. Am. J. Physiol. Renal Physiol. 301, F355–F363 (2011).

    Article  CAS  Google Scholar 

  12. Hirata, K. et al. Exendin-4 has an anti-hypertensive effect in salt-sensitive mice model. Biochem. Biophys. Res. Commun. 380, 44–49 (2009).

    Article  CAS  Google Scholar 

  13. Yu, M. et al. Antihypertensive effect of glucagon-like peptide 1 in Dahl salt-sensitive rats. J. Hypertens. 21, 1125–1135 (2003).

    Article  CAS  Google Scholar 

  14. Gutzwiller, J.P. et al. Glucagon-like peptide 1 induces natriuresis in healthy subjects and in insulin-resistant obese men. J. Clin. Endocrinol. Metab. 89, 3055–3061 (2004).

    Article  CAS  Google Scholar 

  15. Ban, K. et al. Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and -independent pathways. Circulation 117, 2340–2350 (2008).

    Article  CAS  Google Scholar 

  16. Drucker, D.J., Dritselis, A. & Kirkpatrick, P. Liraglutide. Nat. Rev. Drug Discov. 9, 267–268 (2010).

    Article  CAS  Google Scholar 

  17. Scrocchi, L.A. et al. Glucose intolerance but normal satiety in mice with a null mutation in the glucagon-like peptide receptor gene. Nat. Med. 2, 1254–1258 (1996).

    Article  CAS  Google Scholar 

  18. Holtwick, R. et al. Smooth muscle-selective deletion of guanylyl cyclase-A prevents the acute but not chronic effects of ANP on blood pressure. Proc. Natl. Acad. Sci. USA 99, 7142–7147 (2002).

    Article  CAS  Google Scholar 

  19. Winquist, R.J. et al. Atrial natriuretic factor elicits an endothelium-independent relaxation and activates particulate guanylate cyclase in vascular smooth muscle. Proc. Natl. Acad. Sci. USA 81, 7661–7664 (1984).

    Article  CAS  Google Scholar 

  20. Moore-Morris, T. et al. Identification of potential pharmacological targets by analysis of the comprehensive G protein–coupled receptor repertoire in the four cardiac chambers. Mol. Pharmacol. 75, 1108–1116 (2009).

    Article  CAS  Google Scholar 

  21. Drucker, D.J., Philippe, J., Mojsov, S., Chick, W.L. & Habener, J.F. Glucagon-like peptide I stimulates insulin gene expression and increases cyclic AMP levels in a rat islet cell line. Proc. Natl. Acad. Sci. USA 84, 3434–3438 (1987).

    Article  CAS  Google Scholar 

  22. Kang, G., Chepurny, O.G. & Holz, G.G. cAMP-regulated guanine nucleotide exchange factor II (Epac2) mediates Ca2+-induced Ca2+ release in INS-1 pancreatic β-cells. J. Physiol. (Lond.) 536, 375–385 (2001).

    Article  CAS  Google Scholar 

  23. Shibasaki, T. et al. Essential role of Epac2/Rap1 signaling in regulation of insulin granule dynamics by cAMP. Proc. Natl. Acad. Sci. USA 104, 19333–19338 (2007).

    Article  CAS  Google Scholar 

  24. Richards, A.M. et al. Effects of α-human atrial natriuretic peptide in essential hypertension. Hypertension 7, 812–817 (1985).

    Article  CAS  Google Scholar 

  25. Carraro-Lacroix, L.R., Malnic, G. & Girardi, A.C. Regulation of Na+/H+ exchanger NHE3 by glucagon-like peptide 1 receptor agonist exendin-4 in renal proximal tubule cells. Am. J. Physiol. Renal Physiol. 297, F1647–F1655 (2009).

    Article  CAS  Google Scholar 

  26. Kocinsky, H.S., Dynia, D.W., Wang, T. & Aronson, P.S. NHE3 phosphorylation at serines 552 and 605 does not directly affect NHE3 activity. Am. J. Physiol. Renal Physiol. 293, F212–F218 (2007).

    Article  CAS  Google Scholar 

  27. Wei, Y. & Mojsov, S. Tissue-specific expression of the human receptor for glucagon-like peptide-I: brain, heart and pancreatic forms have the same deduced amino acid sequences. FEBS Lett. 358, 219–224 (1995).

    Article  CAS  Google Scholar 

  28. Panjwani, N. et al. GLP-1 receptor activation indirectly reduces hepatic lipid accumulation but does not attenuate development of atherosclerosis in diabetic male ApoE−/− mice. Endocrinology 154, 127–139 (2013).

    Article  CAS  Google Scholar 

  29. Smrcka, A.V., Brown, J.H. & Holz, G.G. Role of phospholipase Cɛ in physiological phosphoinositide signaling networks. Cell Signal. 24, 1333–1343 (2012).

    Article  CAS  Google Scholar 

  30. Ballermann, B.J. A highly sensitive radioreceptor assay for atrial natriuretic peptide in rat plasma. Am. J. Physiol. 254, F159–F163 (1988).

    CAS  PubMed  Google Scholar 

  31. Chattington, P.D. et al. Atrial natriuretic peptide in type 2 diabetes mellitus: response to a physiological mixed meal and relationship to renal function. Diabet. Med. 15, 375–379 (1998).

    Article  CAS  Google Scholar 

  32. Noyan-Ashraf, M.H. et al. GLP-1R agonist liraglutide activates cytoprotective pathways and improves outcomes after experimental myocardial infarction in mice. Diabetes 58, 975–983 (2009).

    Article  CAS  Google Scholar 

  33. Lønborg, J. et al. Exenatide reduces reperfusion injury in patients with ST-segment elevation myocardial infarction. Eur. Heart J. 33, 1491–1499 (2012).

    Article  Google Scholar 

  34. Padmanabhan, S., Newton-Cheh, C. & Dominiczak, A.F. Genetic basis of blood pressure and hypertension. Trends Genet. 28, 397–408 (2012).

    Article  CAS  Google Scholar 

  35. Moro, C. et al. Atrial natriuretic peptide contributes to physiological control of lipid mobilization in humans. FASEB J. 18, 908–910 (2004).

    Article  CAS  Google Scholar 

  36. Birkenfeld, A.L. et al. Atrial natriuretic peptide induces postprandial lipid oxidation in humans. Diabetes 57, 3199–3204 (2008).

    Article  CAS  Google Scholar 

  37. Bordicchia, M. et al. Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes. J. Clin. Invest. 122, 1022–1036 (2012).

    Article  CAS  Google Scholar 

  38. Engeli, S. et al. Natriuretic peptides enhance the oxidative capacity of human skeletal muscle. J. Clin. Invest. 122, 4675–4679 (2012).

    Article  CAS  Google Scholar 

  39. Ropero, A.B. et al. The atrial natriuretic peptide and guanylyl cyclase-A system modulates pancreatic β-cell function. Endocrinology 151, 3665–3674 (2010).

    Article  CAS  Google Scholar 

  40. Zhang, J. et al. Nitro-oleic acid inhibits angiotensin II–induced hypertension. Circ. Res. 107, 540–548 (2010).

    Article  CAS  Google Scholar 

  41. Yamamoto, H. et al. Glucagon-like peptide-1 receptor stimulation increases blood pressure and heart rate and activates autonomic regulatory neurons. J. Clin. Invest. 110, 43–52 (2002).

    Article  CAS  Google Scholar 

  42. Shen, B., Ye, C.L., Ye, K.H., Zhuang, L. & Jiang, J.H. Doxorubicin-induced vasomotion and [Ca2+]i elevation in vascular smooth muscle cells from C57BL/6 mice. Acta Pharmacol. Sin. 30, 1488–1495 (2009).

    Article  CAS  Google Scholar 

  43. Sambrano, G.R. et al. Navigating the signalling network in mouse cardiac myocytes. Nature 420, 712–714 (2002).

    Article  CAS  Google Scholar 

  44. Wu, X. et al. MEK-ERK pathway modulation ameliorates disease phenotypes in a mouse model of Noonan syndrome associated with the Raf1L613V mutation. J. Clin. Invest. 121, 1009–1025 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Kabir for assistance with mouse telemetry and G. Holz (State University of New York Upstate Medical University) for the provision of Epac2 virus constructs. These studies were carried out with support from the Heart and Stroke Foundation of Ontario HSFO NA6997, the Canada Research Chair in Regulatory Peptides, the Banting and Best Diabetes Centre–Novo Nordisk Chair in incretin biology, a grant from Novo Nordisk Inc. to D.J.D., Canadian Institutes of Health Research grant MOP 111159 to J.A.S. and grants to S.S. from the Japan Science and Technology Agency and the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Contributions

M.K., M.J.P. and J.A.S. designed and carried out experiments, analyzed results and wrote the manuscript. M.K. was supported by a postdoctoral fellowship award from the Canadian Diabetes Association. S.S. provided Rapgef4−/− mice, interpreted results and wrote the manuscript. T.S. carried out experiments and reviewed the manuscript. S.E.Q. and P.H.B. helped design experiments and reviewed the manuscript. D.J.D. designed experiments, interpreted results and wrote the manuscript.

Corresponding author

Correspondence to Daniel J Drucker.

Ethics declarations

Competing interests

D.J.D. has served as a consultant to Amylin Pharmaceuticals Inc., Eli Lilly Inc., GlaxoSmithKline, Novo Nordisk Inc. and Sanofi Inc.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 (PDF 500 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, M., Platt, M., Shibasaki, T. et al. GLP-1 receptor activation and Epac2 link atrial natriuretic peptide secretion to control of blood pressure. Nat Med 19, 567–575 (2013). https://doi.org/10.1038/nm.3128

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3128

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research