Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Preventive and therapeutic effects of Smad7 on radiation-induced oral mucositis

Abstract

We report that K5.Smad7 mice, which express a Smad7 transgene under the control of a keratin 5 promoter, were resistant to radiation-induced oral mucositis, a painful oral ulceration. In addition to nuclear factor κB (NF-κB) activation, which is known to contribute to oral mucositis, we found activated transforming growth factor β (TGF-β) signaling in cells from this condition. Smad7 dampened both pathways to attenuate inflammation, growth inhibition and apoptosis. Additionally, Smad7 promoted oral epithelial migration to close the wound. Further analyses revealed that TGF-β signaling Smads and their co-repressor C-terminal binding protein 1 (CtBP1) transcriptionally repressed Rac1, and that Smad7 abrogated this repression. Knocking down Rac1 expression in mouse keratinocytes abrogated Smad7-induced migration. Topical application of Smad7 protein conjugated with a cell-permeable Tat tag to oral mucosa showed prophylactic and therapeutic effects on radiation-induced oral mucositis in mice. Thus, we have identified new molecular mechanisms involved in oral mucositis pathogenesis, and our data suggest an alternative therapeutic strategy to block multiple pathological processes in this condition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: K5.Smad7 mice are resistant to radiation-induced oral mucositis.
Figure 2: Molecular alterations attenuated by Smad7.
Figure 3: Smad7 leads to higher Rac1 expression by repressing individual Smad proteins and CtBP1 binding to the SBE of the Rac1 promoter.
Figure 4: CtBP1-associated Rac1 repression contributes to the inhibition of keratinocyte migration.
Figure 5: Oral Tat-Smad7 application prevents radiation-induced oral mucositis in mice.
Figure 6: Tat-Smad7 treatment on oral mucositis.

Similar content being viewed by others

References

  1. Sonis, S.T. Efficacy of palifermin (keratinocyte growth factor-1) in the amelioration of oral mucositis. Core Evid. 4, 199–205 (2010).

    PubMed  PubMed Central  Google Scholar 

  2. Vagliano, L. et al. Incidence and severity of oral mucositis in patients undergoing haematopoietic SCT—results of a multicentre study. Bone Marrow Transplant. 46, 727–732 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Scully, C., Sonis, S. & Diz, P.D. Oral mucositis. Oral Dis. 12, 229–241 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Wu, J.C., Beale, K.K. & Ma, J.D. Evaluation of current and upcoming therapies in oral mucositis prevention. Future Oncol. 6, 1751–1770 (2010).

    Article  PubMed  Google Scholar 

  5. Henke, M. et al. Palifermin decreases severe oral mucositis of patients undergoing postoperative radiochemotherapy for head and neck cancer: a randomized, placebo-controlled trial. J. Clin. Oncol. 29, 2815–2820 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Le, Q.T. et al. Palifermin reduces severe mucositis in definitive chemoradiotherapy of locally advanced head and neck cancer: a randomized, placebo-controlled study. J. Clin. Oncol. 29, 2808–2814 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Zhao, J. et al. R-Spondin1 protects mice from chemotherapy or radiation-induced oral mucositis through the canonical Wnt/β-catenin pathway. Proc. Natl. Acad. Sci. USA 106, 2331–2336 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wu, H.G. et al. Therapeutic effect of recombinant human epidermal growth factor (RhEGF) on mucositis in patients undergoing radiotherapy, with or without chemotherapy, for head and neck cancer: a double-blind placebo-controlled prospective phase 2 multi-institutional clinical trial. Cancer 115, 3699–3708 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Weigelt, C., Haas, R. & Kobbe, G. Pharmacokinetic evaluation of palifermin for mucosal protection from chemotherapy and radiation. Expert Opin. Drug Metab. Toxicol. 7, 505–515 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Haddad, R. et al. Randomized phase 2 study of concomitant chemoradiotherapy using weekly carboplatin/paclitaxel with or without daily subcutaneous amifostine in patients with locally advanced head and neck cancer. Cancer 115, 4514–4523 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Cotrim, A.P. et al. Pharmacological protection from radiation +/− cisplatin-induced oral mucositis. Int. J. Radiat. Oncol. Biol. Phys. 83, 1284–1290 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Iglesias-Bartolome, R. et al. mTOR inhibition prevents epithelial stem cell senescence and protects from radiation-induced mucositis. Cell Stem Cell 11, 401–414 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fistarol, S.K. & Itin, P.H. Anti-inflammatory treatment. Curr. Probl. Dermatol. 40, 58–70 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Elad, S. et al. Topical immunomodulators for management of oral mucosal conditions, a systematic review; part I: calcineurin inhibitors. Expert Opin. Emerg. Drugs 15, 713–726 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Elad, S. et al. Topical immunomodulators for management of oral mucosal conditions, a systematic review; part II: miscellaneous agents. Expert Opin. Emerg. Drugs 16, 183–202 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. O'Neill, I.D. Off-label use of biologicals in the management of inflammatory oral mucosal disease. J. Oral Pathol. Med. 37, 575–581 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. He, W. et al. Overexpression of Smad7 results in severe pathological alterations in multiple epithelial tissues. EMBO J. 21, 2580–2590 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hong, S. et al. Smad7 binds to the adaptors TAB2 and TAB3 to block recruitment of the kinase TAK1 to the adaptor TRAF2. Nat. Immunol. 8, 504–513 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Han, G. et al. Smad7-induced β-catenin degradation alters epidermal appendage development. Dev. Cell 11, 301–312 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Fowler, J.F., Harari, P.M., Leborgne, F. & Leborgne, J.H. Acute radiation reactions in oral and pharyngeal mucosa: tolerable levels in altered fractionation schedules. Radiother. Oncol. 69, 161–168 (2003).

    Article  PubMed  Google Scholar 

  21. Shull, M.M. et al. Targeted disruption of the mouse transforming growth factor-β 1 gene results in multifocal inflammatory disease. Nature 359, 693–699 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kulkarni, A.B. et al. Transforming growth factor β 1 null mutation in mice causes excessive inflammatory response and early death. Proc. Natl. Acad. Sci. USA 90, 770–774 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lu, S.L. et al. Overexpression of transforming growth factor β1 in head and neck epithelia results in inflammation, angiogenesis, and epithelial hyperproliferation. Cancer Res. 64, 4405–4410 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Yan, X. & Chen, Y.G. Smad7: not only a regulator, but also a cross-talk mediator of TGF-β signalling. Biochem. J. 434, 1–10 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Castilho, R.M. et al. Rac1 is required for epithelial stem cell function during dermal and oral mucosal wound healing but not for tissue homeostasis in mice. PLoS ONE 5, e10503 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Koch, R.M. et al. Incisional wound healing in transforming growth factor-β1 null mice. Wound Repair Regen. 8, 179–191 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Ashcroft, G.S. & Roberts, A.B. Loss of Smad3 modulates wound healing. Cytokine Growth Factor Rev. 11, 125–131 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Zhang, Y.E. Non-Smad pathways in TGF-β signaling. Cell Res. 19, 128–139 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Massagué, J. & Gomis, R.R. The logic of TGFβ signaling. FEBS Lett. 580, 2811–2820 (2006).

    Article  PubMed  CAS  Google Scholar 

  30. Massagué, J., Seoane, J. & Wotton, D. Smad transcription factors. Genes Dev. 19, 2783–2810 (2005).

    Article  PubMed  CAS  Google Scholar 

  31. Hoot, K.E. et al. HGF upregulation contributes to angiogenesis in mice with keratinocyte-specific Smad2 deletion. J. Clin. Invest. 120, 3606–3616 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Brooks, H., Lebleu, B. & Vives, E. Tat peptide-mediated cellular delivery: back to basics. Adv. Drug Deliv. Rev. 57, 559–577 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Cardarelli, F., Serresi, M., Bizzarri, R. & Beltram, F. Tuning the transport properties of HIV-1 Tat arginine-rich motif in living cells. Traffic 9, 528–539 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Kalvala, A. et al. Enhancement of gene targeting in human cells by intranuclear permeation of the Saccharomyces cerevisiae Rad52 protein. Nucleic Acids Res. 38, e149 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Dörr, W., Reichel, S. & Spekl, K. Effects of keratinocyte growth factor (palifermin) administration protocols on oral mucositis (mouse) induced by fractionated irradiation. Radiother. Oncol. 75, 99–105 (2005).

    Article  PubMed  CAS  Google Scholar 

  36. Dörr, W., Heider, K. & Spekl, K. Reduction of oral mucositis by palifermin (rHuKGF): dose-effect of rHuKGF. Int. J. Radiat. Biol. 81, 557–565 (2005).

    Article  PubMed  CAS  Google Scholar 

  37. Singh, B. et al. Molecular cytogenetic characterization of head and neck squamous cell carcinoma and refinement of 3q amplification. Cancer Res. 61, 4506–4513 (2001).

    CAS  PubMed  Google Scholar 

  38. Qiu, W., Schonleben, F., Li, X. & Su, G.H. Disruption of transforming growth factor β–Smad signaling pathway in head and neck squamous cell carcinoma as evidenced by mutations of SMAD2 and SMAD4. Cancer Lett. 245, 163–170 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Massagué, J. TGFβ in Cancer. Cell 134, 215–230 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Ten Dijke, P., Goumans, M.J., Itoh, F. & Itoh, S. Regulation of cell proliferation by Smad proteins. J. Cell Physiol. 191, 1–16 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Derynck, R. & Zhang, Y.E. Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature 425, 577–584 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Pasparakis, M. et al. TNF-mediated inflammatory skin disease in mice with epidermis-specific deletion of IKK2. Nature 417, 861–866 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Maier, P., Veldwijk, M.R. & Wenz, F. Radioprotective gene therapy. Expert Opin. Biol. Ther. 11, 1135–1151 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Bornstein, S. et al. Smad4 loss in mice causes spontaneous head and neck cancer with increased genomic instability and inflammation. J. Clin. Invest. 119, 3408–3419 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Lu, S.L. et al. Loss of transforming growth factor-β type II receptor promotes metastatic head-and-neck squamous cell carcinoma. Genes Dev. 20, 1331–1342 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Akhurst, R.J. & Hata, A. Targeting the TGFβ signalling pathway in disease. Nat. Rev. Drug Discov. 11, 790–811 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Heitz, F., Morris, M.C. & Divita, G. Twenty years of cell-penetrating peptides: from molecular mechanisms to therapeutics. Br. J. Pharmacol. 157, 195–206 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zheng, C. et al. Prevention of radiation-induced oral mucositis after adenoviral vector–mediated transfer of the keratinocyte growth factor cDNA to mouse submandibular glands. Clin. Cancer Res. 15, 4641–4648 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Han, G., Li, F., Ten Dijke, P. & Wang, X.J. Temporal smad7 transgene induction in mouse epidermis accelerates skin wound healing. Am. J. Pathol. 179, 1768–1779 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang, Q., Yoshimatsu, Y., Hildebrand, J., Frisch, S.M. & Goodman, R.H. Homeodomain interacting protein kinase 2 promotes apoptosis by downregulating the transcriptional corepressor CtBP. Cell 115, 177–186 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Bergman, L.M., Birts, C.N., Darley, M., Gabrielli, B. & Blaydes, J.P. CtBPs promote cell survival through the maintenance of mitotic fidelity. Mol. Cell Biol. 29, 4539–4551 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hong, S., Lee, C. & Kim, S.J. Smad7 sensitizes tumor necrosis factor induced apoptosis through the inhibition of antiapoptotic gene expression by suppressing activation of the nuclear factor-κB pathway. Cancer Res. 67, 9577–9583 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Munshi, A., Hobbs, M. & Meyn, R.E. Clonogenic cell survival assay. Methods Mol. Med. 110, 21–28 (2005).

    PubMed  Google Scholar 

  54. Li, A.G., Lu, S.L., Zhang, M.X., Deng, C. & Wang, X.J. Smad3 knockout mice exhibit a resistance to skin chemical carcinogenesis. Cancer Res. 64, 7836–7845 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. He, W. et al. Overexpression of Smad7 results in severe pathological alterations in multiple epithelial tissues. EMBO J. 21, 2580–2590 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hoot, K.E. et al. Keratinocyte-specific Smad2 ablation results in increased epithelial-mesenchymal transition during skin cancer formation and progression. J. Clin. Invest. 118, 2722–2732 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Owens, P. et al. Smad4-dependent desmoglein-4 expression contributes to hair follicle integrity. Dev. Biol. 322, 155–166 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants AR061792 and DE015953 to X.-J.W., R01CA115468 to Q.Z. and R03DA033982 to R.Z. and Q.Z. and the Colorado State/University of Colorado Bioscience Discovery Evaluation grant to X.-J.W., Q.Z. and Y.R. and was partially supported by NIH grant P30CA046934 to the University of Colorado Cancer Center. L.B. was supported by a grant (81060189) from The National Natural Science Foundation of China (NSFC). F.L. was supported by grants from the NSFC (81102596), The Shanghai Rising-Star Program (12QA1403300) and The Innovation Program of Shanghai Municipal Education Commission (12YZ067). The authors thank S. Said, C. Marshall and C. Liu for searching human oral mucositis clinical samples and C.Y. Li and G. Gang for their input on radiotherapy in patients with oral cancer. The authors also thank P. Garl for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

G.H., Q.Z. and X.-J.W. designed experiments and wrote the manuscript. D.R. provided input in radiotherapy dosing and regimens in oral cancer treatment and clinical care of radiation-induced oral mucositis and the MSK921 cell line. G.H., L.B., F.L. and D.W. performed the radiation-induced oral mucositis animal experiments and other histopathological and molecular analyses at the University of Colorado Denver, Anschutz Medical Campus. A.C., A.S. and J.B.M. performed radiation-induced oral mucositis animal experiments at the NIH. Y.D., G.B. and Q.Z. performed protein purification. R.Z., Y.R. and Q.Z. contributed to optimization of Tat-Smad7 protein production. J.S.G. provided NOK-SI cells. P.t.D. provided Smad7-specific antibody. L.B. and J.L. provided human samples and performed immunostaining on those samples. D.R., J.B.M. and J.S.G. provided suggestions for manuscript revisions.

Corresponding authors

Correspondence to Qinghong Zhang or Xiao-Jing Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 (PDF 1824 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, G., Bian, L., Li, F. et al. Preventive and therapeutic effects of Smad7 on radiation-induced oral mucositis. Nat Med 19, 421–428 (2013). https://doi.org/10.1038/nm.3118

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3118

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing