Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Inadequate T follicular cell help impairs B cell immunity during HIV infection

Abstract

The majority of HIV-infected individuals fail to produce protective antibodies and have diminished responses to new immunizations1,2,3. We report here that even though there is an expansion of follicular helper T (TFH) cells in HIV-infected individuals, the cells are unable to provide adequate B cell help. We found a higher frequency of programmed cell death ligand 1 (PD-L1)+ germinal center B cells from lymph nodes of HIV-infected individuals suggesting a potential role for PD-1–PD-L1 interaction in regulating TFH cell function. In fact, we show that engagement of PD-1 on TFH cells leads to a reduction in cell proliferation, activation, inducible T-cell co-stimulator (ICOS) expression and interleukin-21 (IL-21) cytokine secretion. Blocking PD-1 signaling enhances HIV-specific immunoglobulin production in vitro. We further show that at least part of this defect involves IL-21, as addition of this cytokine rescues antibody responses and plasma cell generation in vitro. Our results suggest that deregulation of TFH cell–mediated B cell help diminishes B cell responses during HIV infection and may be related to PD-1 triggering on TFH cells. These results demonstrate a role for TFH cell impairment in HIV pathogenesis and suggest that enhancing their function could have a major impact on the outcome and control of HIV infection, preventing future infections and improving immune responses to vaccinations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TFH cells from HIV-infected subjects are unable to provide appropriate B cell help.
Figure 2: Ex vivo characterization of TFH cells and B cells in lymph nodes from HIV-infected and uninfected individuals.
Figure 3: Ligating PD-1 on TFH cells leads to a decrease in cell proliferation, activation and cytokine secretion.
Figure 4: Supplementation with IL-21 restores IgG production in cocultures from HIV-infected lymph nodes.

Similar content being viewed by others

References

  1. De Milito, A. et al. Mechanisms of hypergammaglobulinemia and impaired antigen-specific humoral immunity in HIV-1 infection. Blood 103, 2180–2186 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Titanji, K. et al. Loss of memory B cells impairs maintenance of long-term serologic memory during HIV-1 infection. Blood 108, 1580–1587 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Hart, M. et al. Loss of discrete memory B cell subsets is associated with impaired immunization responses in HIV-1 infection and may be a risk factor for invasive pneumococcal disease. J. Immunol. 178, 8212–8220 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Moir, S. & Fauci, A.S. B cells in HIV infection and disease. Nat. Rev. Immunol. 9, 235–245 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. van Grevenynghe, J. et al. Loss of memory B cells during chronic HIV infection is driven by Foxo3a- and TRAIL-mediated apoptosis. J. Clin. Invest. 121, 3877–3888 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. De Milito, A., Morch, C., Sonnerborg, A. & Chiodi, F. Loss of memory (CD27) B lymphocytes in HIV-1 infection. AIDS 15, 957–964 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Scheid, J.F. et al. Broad diversity of neutralizing antibodies isolated from memory B cells in HIV-infected individuals. Nature 458, 636–640 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Walker, L.M. et al. Broad neutralization coverage of HIV by multiple highly potent antibodies. Nature 477, 466–470 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wu, X. et al. Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1. Science 329, 856–861 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fahey, L.M. et al. Viral persistence redirects CD4 T cell differentiation toward T follicular helper cells. J. Exp. Med. 208, 987–999 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Harker, J.A., Lewis, G.M., Mack, L. & Zuniga, E.I. Late interleukin-6 escalates T follicular helper cell responses and controls a chronic viral infection. Science 334, 825–829 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Crotty, S. Follicular helper CD4 T cells (TFH). Annu. Rev. Immunol. 29, 621–663 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Haase, A.T. et al. Quantitative image analysis of HIV-1 infection in lymphoid tissue. Science 274, 985–989 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Keele, B.F. et al. Characterization of the follicular dendritic cell reservoir of human immunodeficiency virus type 1. J. Virol. 82, 5548–5561 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lindqvist, M. et al. Expansion of HIV-specific T follicular helper cells in chronic HIV infection. J. Clin. Invest. 122, 3271–3280 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hong, J.J., Amancha, P.K., Rogers, K., Ansari, A.A. & Villinger, F. Spatial alterations between CD4+ T follicular helper, B, and CD8+ T cells during simian immunodeficiency virus infection: T/B cell homeostasis, activation, and potential mechanism for viral escape. J. Immunol. 188, 3247–3256 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Petrovas, C. et al. CD4 T follicular helper cell dynamics during SIV infection. J. Clin. Invest. 122, 3281–3294 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Popovic, M. et al. Persistence of HIV-1 structural proteins and glycoproteins in lymph nodes of patients under highly active antiretroviral therapy. Proc. Natl. Acad. Sci. USA 102, 14807–14812 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Moir, S. et al. Evidence for HIV-associated B cell exhaustion in a dysfunctional memory B cell compartment in HIV-infected viremic individuals. J. Exp. Med. 205, 1797–1805 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Malaspina, A. et al. CpG oligonucleotides enhance proliferative and effector responses of B cells in HIV-infected individuals. J. Immunol. 181, 1199–1206 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Karnowski, A. et al. B and T cells collaborate in antiviral responses via IL-6, IL-21, and transcriptional activator and coactivator, Oct2 and OBF-1. J. Exp. Med. 209, 2049–2064 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Choi, Y.S. et al. ICOS receptor instructs T follicular helper cell versus effector cell differentiation via induction of the transcriptional repressor Bcl6. Immunity 34, 932–946 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Konforte, D., Simard, N. & Paige, C.J. IL-21: an executor of B cell fate. J. Immunol. 182, 1781–1787 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Sage, P.T., Francisco, L.M., Carman, C.V. & Sharpe, A.H. The receptor PD-1 controls follicular regulatory T cells in the lymph nodes and blood. Nat. Immunol. 14, 152–161 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Linterman, M.A. et al. Foxp3+ follicular regulatory T cells control the germinal center response. Nat. Med. 17, 975–982 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chung, Y. et al. Follicular regulatory T cells expressing Foxp3 and Bcl-6 suppress germinal center reactions. Nat. Med. 17, 983–988 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wollenberg, I. et al. Regulation of the germinal center reaction by Foxp3+ follicular regulatory T cells. J. Immunol. 187, 4553–4560 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Hams, E. et al. Blockade of B7–H1 (programmed death ligand 1) enhances humoral immunity by positively regulating the generation of T follicular helper cells. J. Immunol. 186, 5648–5655 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Bauquet, A.T. et al. The costimulatory molecule ICOS regulates the expression of c-Maf and IL-21 in the development of follicular T helper cells and TH-17 cells. Nat. Immunol. 10, 167–175 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Kroenke, M.A. et al. Bcl6 and Maf cooperate to instruct human follicular helper CD4 T cell differentiation. J. Immunol. 188, 3734–3744 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Kim, J.I., Ho, I.C., Grusby, M.J. & Glimcher, L.H. The transcription factor c-Maf controls the production of interleukin-4 but not other TH2 cytokines. Immunity 10, 745–751 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Iannello, A. et al. Decreased levels of circulating IL-21 in HIV-infected AIDS patients: correlation with CD4+ T-cell counts. Viral Immunol. 21, 385–388 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Wei, X. et al. Antibody neutralization and escape by HIV-1. Nature 422, 307–312 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Francisco, L.M., Sage, P.T. & Sharpe, A.H. The PD-1 pathway in tolerance and autoimmunity. Immunol. Rev. 236, 219–242 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Butler, N.S. et al. Therapeutic blockade of PD-L1 and LAG-3 rapidly clears established blood-stage Plasmodium infection. Nat. Immunol. 13, 188–195 (2012).

    Article  CAS  Google Scholar 

  36. Velu, V. et al. Enhancing SIV-specific immunity in vivo by PD-1 blockade. Nature 458, 206–210 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Bekker, V. et al. Persistent humoral immune defect in highly active antiretroviral therapy-treated children with HIV-1 infection: loss of specific antibodies against attenuated vaccine strains and natural viral infection. Pediatrics 118, e315–e322 (2006).

    Article  PubMed  Google Scholar 

  38. Mehta, N. et al. Impaired generation of hepatitis B virus–specific memory B cells in HIV infected individuals following vaccination. Vaccine 28, 3672–3678 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Klatt, N.R. et al. SIV infection of rhesus macaques results in dysfunctional T- and B-cell responses to neo and recall Leishmania major vaccination. Blood 118, 5803–5812 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schacker, T.W. et al. Collagen deposition in HIV-1 infected lymphatic tissues and T cell homeostasis. J. Clin. Invest. 110, 1133–1139 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank W. Ryzner, R. Bordi and D. Brown for sample collection. We also thank K. Kusser and Y. Shi from the Flow Cytometry Core at Vaccine & Gene Therapy Institute Florida for their help with sorting all the samples. We are grateful to R. Debernardo (Case Western Reserve University and University Hospitals Case Medical Center) for obtaining the HIV-uninfected lymph nodes and to B. Rodriguez for his help with the infected lymph node samples. This study was supported in part by US National Institutes of Health (NIH) contract HHSN272201100017C, NIH-1P01 AI080192, U19AI082630, 2P01 AI056299 and R01 AI096966. This work was also supported by the Case Western Reserve University Center for AIDS Research (AI 36219) and by the Cleveland Immunopathogenesis Consortium (AI 76174).

Author information

Authors and Affiliations

Authors

Contributions

R.A.C. designed and performed experiments, analyzed data and wrote the manuscript. J.C.M. helped perform the phenotyping of TFH and lymph node cell populations. A.-L.S. and M.P. helped provide preliminary data and performed the Luminex assays. J.v.G. helped in the coculture assays and ELISAs. T.M. assisted in the tonsil processing. E.C. and A.M. provided tissue sections for immunohistochemistry; G.J.F. provided valuable reagents and intellectual input. J.M.J. provided lymph node samples and discussion; A.D.B. performed surgeries on HIV infected lymph nodes; G.A.-T. Jr. provided intellectual input and valuable tonsil samples. S.C. assisted in experimental design, discussion and analysis of data. J.D.E. performed immunohistochemistry. G.P. and M.M.L. provided valuable discussion, designed experiments, provided conceptual advice and edited the manuscript. E.K.H. conceived of and directed the research, analyzed data and helped write the manuscript.

Corresponding author

Correspondence to Elias K Haddad.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–12 and Supplementary Table 1 (PDF 819 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cubas, R., Mudd, J., Savoye, AL. et al. Inadequate T follicular cell help impairs B cell immunity during HIV infection. Nat Med 19, 494–499 (2013). https://doi.org/10.1038/nm.3109

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3109

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing