Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Lysine-specific demethylase 1 is a therapeutic target for fetal hemoglobin induction

Abstract

Enhanced fetal γ-globin synthesis alleviates symptoms of β-globinopathies such as sickle cell disease and β-thalassemia, but current γ-globin–inducing drugs offer limited beneficial effects. We show here that lysine-specific demethylase 1 (LSD1) inhibition by RNAi in human erythroid cells or by the monoamine oxidase inhibitor tranylcypromine in human erythroid cells or β-type globin–transgenic mice enhances γ-globin expression. LSD1 is thus a promising therapeutic target for γ-globin induction, and tranylcypromine may serve as a lead compound for the development of a new γ-globin inducer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Induction of fetal hemoglobin by an LSD1 inhibitor, TCP, in adult erythroid cells.
Figure 2: Induction of γ-globin expression by LSD1 inhibition.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Testa, U. Ann. Hematol. 88, 505–528 (2009).

    Article  CAS  Google Scholar 

  2. Tanabe, O. et al. EMBO J. 21, 3434–3442 (2002).

    Article  CAS  Google Scholar 

  3. Tanabe, O. et al. EMBO J. 26, 2295–2306 (2007).

    Article  CAS  Google Scholar 

  4. Cui, S. et al. Mol. Cell Biol. 31, 3298–3311 (2011).

    Article  CAS  Google Scholar 

  5. Shi, Y. et al. Cell 119, 941–953 (2004).

    Article  CAS  Google Scholar 

  6. Hu, X. et al. Proc. Natl. Acad. Sci. USA 106, 10141–10146 (2009).

    Article  CAS  Google Scholar 

  7. Saleque, S., Kim, J., Rooke, H.M. & Orkin, S.H. Mol. Cell 27, 562–572 (2007).

    Article  CAS  Google Scholar 

  8. Lee, M.G., Wynder, C., Schmidt, D.M., McCafferty, D.G. & Shiekhattar, R. Chem. Biol. 13, 563–567 (2006).

    Article  CAS  Google Scholar 

  9. Mallinger, A.G. & Smith, E. Psychopharmacol. Bull. 27, 493–502 (1991).

    CAS  PubMed  Google Scholar 

  10. Wang, J. et al. Nat. Genet. 41, 125–129 (2009).

    Article  CAS  Google Scholar 

  11. Moutouh-de Parseval, L.A. et al. J. Clin. Invest. 118, 248–258 (2008).

    Article  CAS  Google Scholar 

  12. Banzon, V. et al. Exp. Hematol. 39, 26–36. e1 (2011).

    Article  CAS  Google Scholar 

  13. Sankaran, V.G. et al. Nature 460, 1093–1097 (2009).

    Article  CAS  Google Scholar 

  14. Buller, A.M., Elford, H.L., DuBois, C.C., Meyer, J. & Lloyd, J.A. Blood Cells Mol. Dis. 25, 255–269 (1999).

    Article  CAS  Google Scholar 

  15. Xu, J. et al. Science 334, 993–996 (2011).

    Article  CAS  Google Scholar 

  16. Menzel, S. et al. Nat. Genet. 39, 1197–1199 (2007).

    Article  CAS  Google Scholar 

  17. Wilber, A., Nienhuis, A.W. & Persons, D.A. Blood 117, 3945–3953 (2011).

    Article  CAS  Google Scholar 

  18. Frieling, H. & Bleich, S. Eur. Arch. Psychiatry Clin. Neurosci. 256, 268–273 (2006).

    Article  Google Scholar 

  19. Sprüssel, A. et al. Leukemia 26, 2039–2051 (2012).

    Article  Google Scholar 

  20. Eyer, F., Jetzinger, E., Pfab, R. & Zilker, T. Clin. Toxicol. (Phila.) 46, 261–263 (2008).

    Article  CAS  Google Scholar 

  21. Giarratana, M.C. et al. Nat. Biotechnol. 23, 69–74 (2005).

    Article  CAS  Google Scholar 

  22. Irizarry, R.A. et al. Biostatistics 4, 249–264 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health grants DK086956 (to O.T. and J.D.E.) and HL24415 (to J.D.E.) and an American Heart Association postdoctoral fellowship to L.S. We thank D. Giacherio and D. Harro for hemoglobin HPLC analysis; C. Yu, A.D. Campbell, K.C. Lim, T. Hosoya, B. Godfrey and M. Sierant for discussions, comments and technical assistance; and D. Lavelle and J. DeSimone for discussions regarding the inductive properties of decitabine. Lentiviruses were produced by the University of Michigan Vector Core. Microarray analysis was performed at the University of Michigan Microarray Core.

Author information

Authors and Affiliations

Authors

Contributions

O.T. and J.D.E. conceived of the study; L.S., S.C., J.D.E. and O.T. designed experiments. L.S. and S.C. performed experiments. L.S., S.C., J.D.E. and O.T. analyzed data and wrote the paper.

Corresponding authors

Correspondence to James D Engel or Osamu Tanabe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 and Supplementary Tables 1–4 (PDF 2950 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, L., Cui, S., Engel, J. et al. Lysine-specific demethylase 1 is a therapeutic target for fetal hemoglobin induction. Nat Med 19, 291–294 (2013). https://doi.org/10.1038/nm.3101

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3101

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing