Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Epigenetic regulation of RAC1 induces synaptic remodeling in stress disorders and depression

Abstract

Depression induces structural and functional synaptic plasticity in brain reward circuits, although the mechanisms promoting these changes and their relevance to behavioral outcomes are unknown. Transcriptional profiling of the nucleus accumbens (NAc) for Rho GTPase–related genes, which are known regulators of synaptic structure, revealed a sustained reduction in RAS-related C3 botulinum toxin substrate 1 (Rac1) expression after chronic social defeat stress. This was associated with a repressive chromatin state surrounding the proximal promoter of Rac1. Inhibition of class 1 histone deacetylases (HDACs) with MS-275 rescued both the decrease in Rac1 transcription after social defeat stress and depression-related behavior, such as social avoidance. We found a similar repressive chromatin state surrounding the RAC1 promoter in the NAc of subjects with depression, which corresponded with reduced RAC1 transcription. Viral-mediated reduction of Rac1 expression or inhibition of Rac1 activity in the NAc increases social defeat–induced social avoidance and anhedonia in mice. Chronic social defeat stress induces the formation of stubby excitatory spines through a Rac1-dependent mechanism involving the redistribution of synaptic cofilin, an actin-severing protein downstream of Rac1. Overexpression of constitutively active Rac1 in the NAc of mice after chronic social defeat stress reverses depression-related behaviors and prunes stubby spines. Taken together, our data identify epigenetic regulation of RAC1 in the NAc as a disease mechanism in depression and reveal a functional role for Rac1 in rodents in regulating stress-related behaviors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chronic social defeat stress decreases Rac1 mRNA expression in the NAc of susceptible but not resilient mice.
Figure 2: Epigenetic regulation of Rac1 after chronic social defeat stress.
Figure 3: Epigenetic regulation of RAC1 mRNA expression in subjects with MDD.
Figure 4: Rac1 expression in the NAc modulates stress-related behavior in mice.
Figure 5: Expression of constitutively active Rac1 (HSV-RacCA) in the NAc prevents chronic social defeat stress–induced stubby spine formation.
Figure 6: Conditional deletion of Rac1 in NAc of Rac1flox/flox mice increases stubby and thin dendritic spines.

Similar content being viewed by others

References

  1. Krishnan, V. & Nestler, E.J. Linking molecules to mood: new insight into the biology of depression. Am. J. Psychiatry 167, 1305–1320 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Greenberg, P.E. et al. The economic burden of depression in the United States: how did it change between 1990 and 2000? J. Clin. Psychiatry 64, 1465–1475 (2003).

    Article  PubMed  Google Scholar 

  3. Kessler, R.C., Chiu, W.T., Demler, O., Merikangas, K.R. & Walters, E.E. Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Arch. Gen. Psychiatry 62, 617–627 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Tissot, R. The common pathophysiology of monaminergic psychoses: a new hypothesis. Neuropsychobiology 1, 243–260 (1975).

    Article  CAS  PubMed  Google Scholar 

  5. Smith, R.S. The macrophage theory of depression. Med. Hypotheses 35, 298–306 (1991).

    Article  CAS  PubMed  Google Scholar 

  6. Duman, R.S., Heninger, G.R. & Nestler, E.J. A molecular and cellular theory of depression. Arch. Gen. Psychiatry 54, 597–606 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Palucha, A. & Pilc, A. The involvement of glutamate in the pathophysiology of depression. Drug News Perspect. 18, 262–268 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Christoffel, D.J., Golden, S.A. & Russo, S.J. Structural and synaptic plasticity in stress-related disorders. Rev. Neurosci. 22, 535–549 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Capuron, L. & Miller, A.H. Immune system to brain signaling: neuropsychopharmacological implications. Pharmacol. Ther. 130, 226–238 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Manji, H.K. et al. Enhancing neuronal plasticity and cellular resilience to develop novel, improved therapeutics for difficult-to-treat depression. Biol. Psychiatry 53, 707–742 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Vidal, R. et al. New strategies in the development of antidepressants: towards the modulation of neuroplasticity pathways. Curr. Pharm. Des. 17, 521–533 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Kang, H.J. et al. Decreased expression of synapse-related genes and loss of synapses in major depressive disorder. Nat. Med. 18, 1413–1417 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Christoffel, D.J. et al. IκB kinase regulates social defeat stress-induced synaptic and behavioral plasticity. J. Neurosci. 31, 314–321 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Christoffel, D.J. et al. Effects of inhibitor of κB kinase activity in the nucleus accumbens on emotional behavior. Neuropsychopharmacology 37, 2615–2623 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nestler, E.J. & Carlezon, W.A. Jr. The mesolimbic dopamine reward circuit in depression. Biol. Psychiatry 59, 1151–1159 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Krishnan, V. et al. Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions. Cell 131, 391–404 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Covington, H.E. III et al. Antidepressant actions of histone deacetylase inhibitors. J. Neurosci. 29, 11451–11460 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wei, Q. et al. Early-life forebrain glucocorticoid receptor overexpression increases anxiety behavior and cocaine sensitization. Biol. Psychiatry 71, 224–231 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Andrus, B.M. et al. Gene expression patterns in the hippocampus and amygdala of endogenous depression and chronic stress models. Mol. Psychiatry 17, 49–61 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Tolias, K.F., Duman, J.G. & Um, K. Control of synapse development and plasticity by Rho GTPase regulatory proteins. Prog. Neurobiol. 94, 133–148 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kiraly, D.D., Eipper-Mains, J.E., Mains, R.E. & Eipper, B.A. Synaptic plasticity, a symphony in GEF. ACS Chem. Neurosci. 1, 348–365 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Berton, O. et al. Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science 311, 864–868 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Nestler, E.J. & Hyman, S.E. Animal models of neuropsychiatric disorders. Nat. Neurosci. 13, 1161–1169 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Golden, S.A., Covington, H.E. III, Berton, O. & Russo, S.J. A standardized protocol for repeated social defeat stress in mice. Nat. Protoc. 6, 1183–1191 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wilkinson, M.B. et al. Imipramine treatment and resiliency exhibit similar chromatin regulation in the mouse nucleus accumbens in depression models. J. Neurosci. 29, 7820–7832 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kumar, A. et al. Chromatin remodeling is a key mechanism underlying cocaine-induced plasticity in striatum. Neuron 48, 303–314 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Feng, J. et al. Cocaine induced transcriptome and epigenome changes in mouse nucleus accumbens. Soc. Neurosci. Abstr. 458.12/T7 (2012).

  28. Dietz, D.M. et al. Rac1 is essential in cocaine-induced structural plasticity of nucleus accumbens neurons. Nat. Neurosci. 15, 891–896 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jiang, Y., Matevossian, A., Huang, H.-S., Straubhaar, J. & Akbarian, S. Isolation of neuronal chromatin from brain tissue. BMC Neurosci. 9, 42 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen, L., Melendez, J., Campbell, K., Kuan, C.Y. & Zheng, Y. Rac1 deficiency in the forebrain results in neural progenitor reduction and microcephaly. Dev. Biol. 325, 162–170 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Pontrello, C.G. et al. Cofilin under control of β-arrestin-2 in NMDA-dependent dendritic spine plasticity, long-term depression (LTD), and learning. Proc. Natl. Acad. Sci. USA 109, E442–E451 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bongmba, O.Y., Martinez, L., Elhardt, M., Butler, K. & Tejada-Simon, M. Modulation of dendritic spines and synaptic function by Rac1: a possible link to Fragile X syndrome pathology. Brain Res. 1399, 79–95 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen, L.Y. et al. Physiological activation of synaptic Rac1 PAK (p-21 activated kinase) signaling is defective in a mouse model of fragile X syndrome. J. Neurosci. 30, 10977–10984 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hayashi-Takagi, A. et al. Disrupted-in-Schizophrenia 1 (DISC1) regulates spines of the glutamate synapse via Rac1. Nat. Neurosci. 13, 327–332 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Golden, S.A. & Russo, S.J. Mechanisms of psychostimulant-induced structural plasticity. Cold Spring Harb. Perspect. Med. 2, a011957 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. de Curtis, I. Functions of Rac GTPases during neuronal development. Dev. Neurosci. 30, 47–58 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Koh, C.-G. Rho GTPases and their regulators in neuronal functions and development. Neurosignals 15, 228–237 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Martinez, L.A. & Tejada-Simon, M. Pharmacological inactivation of the small GTPase Rac1 impairs long-term plasticity in the mouse hippocampus. Neuropharmacology 61, 305–312 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Holtmaat, A. & Svoboda, K. Experience-dependent structural synaptic plasticity in the mammalian brain. Nat. Rev. Neurosci. 10, 647–658 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Yoshihara, Y., De Roo, M. & Muller, D. Dendritic spine formation and stabilization. Curr. Opin. Neurobiol. 19, 146–153 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Luo, L. et al. Differential effects of the Rac GTPase on Purkinje cell axons and dendritic trunks and spines. Nature 379, 837–840 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Nakayama, A.Y., Harms, M.B. & Luo, L. Small GTPases Rac and Rho in the maintenance of dendritic spines and branches in hippocampal pyramidal neurons. J. Neurosci. 20, 5329–5338 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tashiro, A. & Yuste, R. Regulation of dendritic spine motility and stability by Rac1 and Rho kinase: evidence for two forms of spine motility. Mol. Cell. Neurosci. 26, 429–440 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Kuhn, T.B. et al. Regulating actin dynamics in neuronal growth cones by ADF/cofilin and rho family GTPases. J. Neurobiol. 44, 126–144 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Rex, C.S. et al. Different Rho GTPase–dependent signaling pathways initiate sequential steps in the consolidation of long-term potentiation. J. Cell Biol. 186, 85–97 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dubos, A. et al. Alteration of synaptic network dynamics by the intellectual disability protein PAK3. J. Neurosci. 32, 519–527 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li, N. et al. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 329, 959–964 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. LaPlant, Q. et al. Dnmt3a regulates emotional behavior and spine plasticity in the nucleus accumbens. Nat. Neurosci. 13, 1137–1143 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Stolzenburg, S., Bilsland, A., Keith, W.N. & Rots, M.G. Modulation of gene expression using zinc finger–based artificial transcription factors. Methods Mol. Biol. 649, 117–132 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Russo, S.J., Murrough, J.W., Han, M.H., Charney, D.S. & Nestler, E.J. Neurobiology of resilience. Nat. Neurosci. 15, 1475–1484 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tsankova, N. et al. Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat. Neurosci. 9, 519–544 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Stan, A.D. et al. Human postmortem tissue: what quality markers matter? Brain Res. 1123, 1–11 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Radley, J.J. et al. Repeated stress induces dendritic spine loss in the rat medial prefrontal cortex. Cereb. Cortex 16, 313–320 (2006).

    Article  PubMed  Google Scholar 

  54. Rodriguez, A., Ehlenberger, D.B., Dickstein, D.L., Hof, P.R. & Wearne, S.L. Automated three-dimensional detection and shape classification of dendritic spines from fluorescence microscopy images. PLoS One 3, e1997 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Russo, S.J. et al. Nuclear factor κB signaling regulates neuronal morphology and cocaine reward. J. Neurosci. 29, 3529–3537 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Y. Zeng (University of Cincinnati) for providing Rac1flox/flox mice. This research was supported by US National Institute of Mental Health grant R01 MH090264, the Johnson and Johnson International Mental Health Research Organization Rising Star Award (S.J.R.), US National Institute of Mental Health grants P50 MH66172 and P50MH096890 (C.A.T.) and US National Institutes of Health grant T32 GM062754 (K.D.).

Author information

Authors and Affiliations

Authors

Contributions

S.A.G. and S.J.R. contributed to study design, data collection, analysis and writing. D.J.C., M.H., G.E.H., J.M., K.D., M.E.C., C.D., E.R., A.J.R., P.J.K. and J.L.A. contributed to data collection. J.G.-M. contributed to data analysis. R.L.N. contributed to viral design and packaging. G.T., S.G. and C.A.T. collected human brain samples and contributed to data analysis.

Corresponding author

Correspondence to Scott J Russo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 and Supplementary Tables 1–6 (PDF 6780 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golden, S., Christoffel, D., Heshmati, M. et al. Epigenetic regulation of RAC1 induces synaptic remodeling in stress disorders and depression. Nat Med 19, 337–344 (2013). https://doi.org/10.1038/nm.3090

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3090

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing