Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ablation of TRIP-Br2, a regulator of fat lipolysis, thermogenesis and oxidative metabolism, prevents diet-induced obesity and insulin resistance


Obesity develops as a result of altered energy homeostasis favoring fat storage. Here we describe a new transcription co-regulator for adiposity and energy metabolism, SERTA domain containing 2 (TRIP-Br2, also called SERTAD2). TRIP-Br2–null mice are resistant to obesity and obesity-related insulin resistance. Adipocytes of these knockout mice showed greater stimulated lipolysis secondary to enhanced expression of hormone sensitive lipase (HSL) and β3-adrenergic (Adrb3) receptors. The knockout mice also have higher energy expenditure because of increased adipocyte thermogenesis and oxidative metabolism caused by upregulating key enzymes in their respective processes. Our data show that a cell-cycle transcriptional co-regulator, TRIP-Br2, modulates fat storage through simultaneous regulation of lipolysis, thermogenesis and oxidative metabolism. These data, together with the observation that TRIP-Br2 expression is selectively elevated in visceral fat in obese humans, suggests that this transcriptional co-regulator is a new therapeutic target for counteracting the development of obesity, insulin resistance and hyperlipidemia.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Regulation of TRIP-Br2 in obesity and the effects of TRIP-Br2 ablation on obesity.
Figure 2: Effects of TRIP-Br2 ablation on glucose homeostasis and physiological parameters.
Figure 3: TRIP-Br2 ablation enhances lipolysis by upregulation of HSL and Adrb3 expression.
Figure 4: TRIP-Br2 ablation promotes energy expenditure and fatty acid oxidation.
Figure 5: TRIP-Br2–Flag represses HSL and Adrb3 gene expression by recruitment to E2F consensus binding sites.


  1. 1

    Kahn, B.B. & Flier, J.S. Obesity and insulin resistance. J. Clin. Invest. 106, 473–481 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2

    Friedman, J.M. A war on obesity, not the obese. Science 299, 856–858 (2003).

    CAS  PubMed  Google Scholar 

  3. 3

    Rosen, E.D. & Spiegelman, B.M. Adipocytes as regulators of energy balance and glucose homeostasis. Nature 444, 847–853 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4

    Duncan, R.E., Ahmadian, M., Jaworski, K., Sarkadi-Nagy, E. & Sul, H.S. Regulation of lipolysis in adipocytes. Annu. Rev. Nutr. 27, 79–101 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Lafontan, M. & Langin, D. Lipolysis and lipid mobilization in human adipose tissue. Prog. Lipid Res. 48, 275–297 (2009).

    CAS  PubMed  Google Scholar 

  6. 6

    Hamann, A., Flier, J.S. & Lowell, B.B. Decreased brown fat markedly enhances susceptibility to diet-induced obesity, diabetes, and hyperlipidemia. Endocrinology 137, 21–29 (1996).

    CAS  PubMed  Google Scholar 

  7. 7

    Desvergne, B., Michalik, L. & Wahli, W. Transcriptional regulation of metabolism. Physiol. Rev. 86, 465–514 (2006).

    CAS  PubMed  Google Scholar 

  8. 8

    Feige, J.N. & Auwerx, J. Transcriptional coregulators in the control of energy homeostasis. Trends Cell Biol. 17, 292–301 (2007).

    CAS  PubMed  Google Scholar 

  9. 9

    Rosenfeld, M.G., Lunyak, V.V. & Glass, C.K. Sensors and signals: a coactivator/corepressor/epigenetic code for integrating signal-dependent programs of transcriptional response. Genes Dev. 20, 1405–1428 (2006).

    CAS  PubMed  Google Scholar 

  10. 10

    Spiegelman, B.M. & Heinrich, R. Biological control through regulated transcriptional coactivators. Cell 119, 157–167 (2004).

    CAS  PubMed  Google Scholar 

  11. 11

    Lehrke, M. & Lazar, M.A. The many faces of PPARγ. Cell 123, 993–999 (2005).

    CAS  PubMed  Google Scholar 

  12. 12

    Hsu, S.I. et al. TRIP-Br: a novel family of PHD zinc finger- and bromodomain-interacting proteins that regulate the transcriptional activity of E2F–1/DP-1. EMBO J. 20, 2273–2285 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Cheong, J.K. et al. TRIP-Br2 promotes oncogenesis in nude mice and is frequently overexpressed in multiple human tumors. J. Transl. Med. 7, 8 (2009).

    PubMed  PubMed Central  Google Scholar 

  14. 14

    Darwish, H., Cho, J.M., Loignon, M. & Alaoui-Jamali, M.A. Overexpression of SERTAD3, a putative oncogene located within the 19q13 amplicon, induces E2F activity and promotes tumor growth. Oncogene 26, 4319–4328 (2007).

    CAS  PubMed  Google Scholar 

  15. 15

    Hayashi, R., Goto, Y., Ikeda, R., Yokoyama, K.K. & Yoshida, K. CDCA4 is an E2F transcription factor family–induced nuclear factor that regulates E2F-dependent transcriptional activation and cell proliferation. J. Biol. Chem. 281, 35633–35648 (2006).

    CAS  PubMed  Google Scholar 

  16. 16

    Lai, I.L., Wang, S.Y., Yao, Y.L. & Yang, W.M. Transcriptional and subcellular regulation of the TRIP-Br family. Gene 388, 102–109 (2007).

    CAS  PubMed  Google Scholar 

  17. 17

    Hirose, T. et al. Regulation of CREB-mediated transcription by association of CDK4 binding protein p34SEI-1 with CBP. Int. J. Mol. Med. 2003 11, 705–712 (2003).

    CAS  PubMed  Google Scholar 

  18. 18

    Kim, S.S., Chen, Y.M., O'Leary, E., Witzgall, R., Vidal, M. & Bonventre, J.V. A novel member of the RING finger family, KRIP-1, associates with the KRAB-A transcriptional repressor domain of zinc finger proteins. Proc. Natl. Acad. Sci. USA. 93, 15299–15304 (1996).

    CAS  PubMed  Google Scholar 

  19. 19

    Fajas, L. et al. E2Fs regulate adipocyte differentiation. Dev. Cell 3, 39–49 (2002).

    CAS  PubMed  Google Scholar 

  20. 20

    Tseng, Y.H. et al. Prediction of preadipocyte differentiation by gene expression reveals role of insulin receptor substrates and necdin. Nat. Cell Biol. 7, 601–611 (2005).

    CAS  PubMed  Google Scholar 

  21. 21

    Sim, K.G., Cheong, J.K. & Hsu, S.I. The TRIP-Br family of transcriptional regulators is essential for the execution of cyclin E–mediated cell cycle progression. Cell Cycle 5, 1111–1115 (2006).

    CAS  PubMed  Google Scholar 

  22. 22

    Almind, K. & Kahn, C.R. Genetic determinants of energy expenditure and insulin resistance in diet-induced obesity in mice. Diabetes 53, 3274–3285 (2004).

    CAS  PubMed  Google Scholar 

  23. 23

    Jandacek, R.J., Heubi, J.E. & Tso, P. A novel, noninvasive method for the measurement of intestinal fat absorption. Gastroenterology 127, 139–144 (2004).

    CAS  PubMed  Google Scholar 

  24. 24

    Hotta, K. et al. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler. Thromb. Vasc. Biol. 20, 1595–1599 (2000).

    CAS  PubMed  Google Scholar 

  25. 25

    Rosenbaum, M. & Leibel, R.L. The role of leptin in human physiology. N. Engl. J. Med. 341, 913–915 (1999).

    CAS  PubMed  Google Scholar 

  26. 26

    Postic, C. & Girard, J. Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engineered mice. J. Clin. Invest. 118, 829–838 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Hotamisligil, G.S. Inflammation and metabolic disorders. Nature 444, 860–867 (2006).

    CAS  PubMed  Google Scholar 

  28. 28

    Schenk, S., Saberi, M. & Olefsky, J.M. Insulin sensitivity: modulation by nutrients and inflammation. J. Clin. Invest. 118, 2992–3002 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Gregoire, F.M., Smas, C.M. & Sul, H.S. Understanding adipocyte differentiation. Physiol. Rev. 78, 783–809 (1998).

    CAS  PubMed  Google Scholar 

  30. 30

    Rosen, E.D. & MacDougald, O.A. Adipocyte differentiation from the inside out. Nat. Rev. Mol. Cell Biol. 7, 885–896 (2006).

    CAS  PubMed  Google Scholar 

  31. 31

    Kersten, S. Mechanisms of nutritional and hormonal regulation of lipogenesis. EMBO Rep. 2, 282–286 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Uysal, K.T., Scheja, L., Wiesbrock, S.M., Bonner-Weir, S. & Hotamisligil, G.S. Improved glucose and lipid metabolism in genetically obese mice lacking aP2. Endocrinology 141, 3388–3396 (2000).

    CAS  PubMed  Google Scholar 

  33. 33

    Turner, S.M. et al. Measurement of TG synthesis and turnover in vivo by 2H2O incorporation into the glycerol moiety and application of MIDA. Am. J. Physiol. Endocrinol. Metab. 285, E790–E803 (2003).

    CAS  PubMed  Google Scholar 

  34. 34

    Ahmadian, M. et al. Adipose overexpression of desnutrin promotes fatty acid use and attenuates diet-induced obesity. Diabetes 58, 855–866 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Zimmermann, R. et al. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 306, 1383–1386 (2004).

    CAS  PubMed  Google Scholar 

  36. 36

    Holm, C., Osterlund, T., Laurell, H. & Contreras, J.A. Molecular mechanisms regulating hormone-sensitive lipase and lipolysis. Annu. Rev. Nutr. 20, 365–393 (2000).

    CAS  PubMed  Google Scholar 

  37. 37

    Mottillo, E.P., Shen, X.J. & Granneman, J.G. Role of hormone-sensitive lipase in β-adrenergic remodeling of white adipose tissue. Am. J. Physiol. Endocrinol. Metab. 293, E1188–E1197 (2007).

    CAS  PubMed  Google Scholar 

  38. 38

    Langin, D. et al. Adipocyte lipases and defect of lipolysis in human obesity. Diabetes 54, 3190–3197 (2005).

    CAS  PubMed  Google Scholar 

  39. 39

    Lowell, B.B. & Bachman, E.S. β-adrenergic receptors, diet-induced thermogenesis, and obesity. J. Biol. Chem. 278, 29385–29388 (2003).

    CAS  PubMed  Google Scholar 

  40. 40

    Cermak, T. et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 39, e82 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Lonard, D.M., Lanz, R.B. & O'Malley, B.W. Nuclear receptor coregulators and human disease. Endocr. Rev. 28, 575–587 (2007).

    CAS  PubMed  Google Scholar 

  42. 42

    Jaworski, K. et al. AdPLA ablation increases lipolysis and prevents obesity induced by high-fat feeding or leptin deficiency. Nat. Med. 15, 159–168 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Lucas, S., Tavernier, G., Tiraby, C., Mairal, A. & Langin, D. Expression of human hormone-sensitive lipase in white adipose tissue of transgenic mice increases lipase activity but does not enhance in vitro lipolysis. J. Lipid Res. 44, 154–163 (2003).

    CAS  PubMed  Google Scholar 

  44. 44

    Kopecky, J. et al. Reduction of dietary obesity in aP2-Ucp transgenic mice: mechanism and adipose tissue morphology. Am. J. Physiol. 270, E776–E786 (1996).

    CAS  PubMed  Google Scholar 

  45. 45

    Wang, Y.X. et al. Peroxisome-proliferator–activated receptor δ activates fat metabolism to prevent obesity. Cell 113, 159–170 (2003).

    CAS  PubMed  Google Scholar 

  46. 46

    Puigserver, P. et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92, 829–839 (1998).

    CAS  PubMed  Google Scholar 

  47. 47

    Leone, T.C. et al. PGC-1α deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol. 3, e101 (2005).

    PubMed  PubMed Central  Google Scholar 

  48. 48

    Kosteli, A. et al. Weight loss and lipolysis promote a dynamic immune response in murine adipose tissue. J. Clin. Invest. 120, 3466–3479 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Blanchet, E., Annicotte, J.S. & Fajas, L. Cell cycle regulators in the control of metabolism. Cell Cycle 8, 4029–4031 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Berndt, J. et al. Plasma visfatin concentrations and fat depot-specific mRNA expression in humans. Diabetes 54, 2911–2916 (2005).

    CAS  PubMed  Google Scholar 

  51. 51

    Blüher, M., Unger, R., Rassoul, F., Richter, V. & Paschke, R. Relation between glycaemic control, hyperinsulinaemia and plasma concentrations of soluble adhesion molecules in patients with impaired glucose tolerance or Type II diabetes. Diabetologia 45, 210–216 (2002).

    PubMed  PubMed Central  Google Scholar 

  52. 52

    Carpenter, A.E. et al. CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 7, R100 (2006).

    PubMed  PubMed Central  Google Scholar 

  53. 53

    Chiang, S.H. et al. The protein kinase IKKɛ regulates energy balance in obese mice. Cell 138, 961–975 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Ahmadian, M. et al. Desnutrin/ATGL is regulated by AMPK and is required for a brown adipose phenotype. Cell Metab. 13, 739–748 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55

    Yehuda-Shnaidman, E., Buehrer, B., Pi, J., Kumar, N. & Collins, S. Acute stimulation of white adipocyte respiration by PKA-induced lipolysis. Diabetes 59, 2474–2483 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Wu, M. et al. Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells. Am. J. Physiol. Cell Physiol. 292, C125–C136 (2007).

    CAS  PubMed  Google Scholar 

  57. 57

    Boucher, J. et al. Human α2A-adrenergic receptor gene expressed in transgenic mouse adipose tissue under the control of its regulatory elements. J. Mol. Endocrinol. 29, 251–264 (2002).

    CAS  PubMed  Google Scholar 

  58. 58

    Macotela, Y., Boucher, J., Tran, T.T. & Kahn, C.R. Sex and depot differences in adipocyte insulin sensitivity and glucose metabolism. Diabetes 58, 803–812 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    Folch, J., Lees, M. & Sloane Stanley, G.H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226, 497–509 (1957).

    CAS  PubMed  Google Scholar 

  60. 60

    Morgenstern, J.P. & Land, H. Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. Nucleic Acids Res. 18, 3587–3596 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61

    Kulkarni, R.N. et al. Tissue-specific knockout of the insulin receptor in pancreatic beta cells creates an insulin secretory defect similar to that in type 2 diabetes. Cell 96, 329–339 (1999).

    CAS  PubMed  Google Scholar 

  62. 62

    Lu, Y.C. et al. Cyclophilin a protects Peg3 from hypermethylation and inactive histone modification. J. Biol. Chem. 281, 39081–39087 (2006).

    CAS  PubMed  Google Scholar 

Download references


The authors thank C.R. Kahn (Joslin Diabetes Center) for providing reagents and discussions, E. Rosen for discussions, E. Morgan and K. Parlee for excellent assistance in the preparation of this manuscript, H. Li for assistance with hormone assays, O.P. McGuinness for mouse metabolic phenotyping, L. Fajas (INSERM) for providing reagents, M. Mori (Joslin Diabetes Center) for providing samples and R. Zechner for providing the protocol for triglyceride hydrolase activities. Funds to generate some reagents used in this research were supported by US National Institutes of Health (NIH) grant RO1 DK 67536 (R.N.K.) and the Joslin Graetz Bridge Funds (R.N.K.), NIH grants R01 HL073168 (A.D.), K99 DK090210 (C.W.L.), DK51586 and DK58825 (S.R.F.) and the Joslin Diabetes and Endocrinology Research Center Specialized Assay and Advanced Microscopy Cores (NIH P30 DK36836). The human studies were supported by a grant of the Deutsche Forschungsgemeinschaft Clinical Research group 'Atherobesity' (KFO152; BL 833/1-1). C.W.L. was supported by a US National Institutes of Health Interdisciplinary training grant (1RL9EB008539-01) (SysCODE), K99 DK090210 and R00 DK090210. D.K. is the recipient of a research fellowship (Manpei Suzuki Diabetes Foundation, Japan) and a Juvenile Diabetes Research Foundation postdoctoral Fellowship. S.I.-H.H. and J.K.C. were supported by the R. Glenn Davis (Dialysis Center, Inc.) Endowed Professorship in Clinical and Translational Medicine and by the University of Florida, Division of Nephrology Gatorade Fund. S.I.-H.H. was supported as a Scholar of the Clinical Translational Science Institute at the University of Florida.

Author information




C.W.L., J.K.C., S.I.-H.H. and R.N.K. conceived the project. C.W.L. and R.N.K. designed the experiments. A.D. analyzed human data. C.W.L., J.B., J.K.C., C.V., D.K., J.H., C.M., M.K.H., K.T. and H.-J.K. performed experiments and analyzed data. M.B. contributed human samples and supervised human expression analysis. S.R.F. supervised experiments. D.L., S.I.-H.H., Y.-H.T. and L.G. contributed reagents. C.W.L. and R.N.K. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Stephen I-Hong Hsu or Rohit N Kulkarni.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–26, Supplementary Tables 1 and 2 and Supplementary Methods (PDF 644 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Liew, C., Boucher, J., Cheong, J. et al. Ablation of TRIP-Br2, a regulator of fat lipolysis, thermogenesis and oxidative metabolism, prevents diet-induced obesity and insulin resistance. Nat Med 19, 217–226 (2013).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing