Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

β-arrestin 2 regulates Aβ generation and γ-secretase activity in Alzheimer's disease

Abstract

β-arrestins are associated with numerous aspects of G protein–coupled receptor (GPCR) signaling and regulation and accordingly influence diverse physiological and pathophysiological processes. Here we report that β-arrestin 2 expression is elevated in two independent cohorts of individuals with Alzheimer's disease. Overexpression of β-arrestin 2 leads to an increase in amyloid-β (Aβ) peptide generation, whereas genetic silencing of Arrb2 (encoding β-arrestin 2) reduces generation of Aβ in cell cultures and in Arrb2−/− mice. Moreover, in a transgenic mouse model of Alzheimer's disease, genetic deletion of Arrb2 leads to a reduction in the production of Aβ40 and Aβ42. Two GPCRs implicated previously in Alzheimer's disease (GPR3 and the β2-adrenergic receptor) mediate their effects on Aβ generation through interaction with β-arrestin 2. β-arrestin 2 physically associates with the Aph-1a subunit of the γ-secretase complex and redistributes the complex toward detergent-resistant membranes, increasing the catalytic activity of the complex. Collectively, these studies identify β-arrestin 2 as a new therapeutic target for reducing amyloid pathology and GPCR dysfunction in Alzheimer's disease.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Expression of β-arrestin 2 is elevated in individuals with Alzheimer's disease, and overexpression and silencing of β-arrestin 2 differentially regulate Aβ accumulation.
Figure 2: Endogenous Aβ generation is reduced in β-arrestin 2–deficient mice.
Figure 3: The C-terminal domain of GPR3 modulates the interaction with β-arrestin 2 and Aβ generation.
Figure 4: β-arrestin 2 and the active γ-secretase complex are enriched in DRMs.
Figure 5: β-arrestin 2 interacts with the Aph-1a subunit of the γ-secretase complex.
Figure 6: β-arrestin 2 contributes to Aβ generation in an Alzheimer's disease transgenic mouse model.

References

  1. Ballatore, C., Lee, V.M. & Trojanowski, J.Q. Tau-mediated neurodegeneration in Alzheimer's disease and related disorders. Nat. Rev. Neurosci. 8, 663–672 (2007).

    CAS  PubMed  Google Scholar 

  2. Götz, J., Ittner, A. & Ittner, L.M. Tau-targeted treatment strategies in Alzheimer's disease. Br. J. Pharmacol. 165, 1246–1259 (2012).

    PubMed  PubMed Central  Google Scholar 

  3. Holtzman, D.M., Goate, A., Kelly, J. & Sperling, R. Mapping the road forward in Alzheimer's disease. Sci. Transl. Med. 3, 114ps148 (2011).

    Google Scholar 

  4. Golde, T.E., Schneider, L.S. & Koo, E.H. Anti-aβ therapeutics in Alzheimer's disease: the need for a paradigm shift. Neuron 69, 203–213 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Karran, E., Mercken, M. & De Strooper, B. The amyloid cascade hypothesis for Alzheimer's disease: an appraisal for the development of therapeutics. Nat. Rev. Drug Discov. 10, 698–712 (2011).

    CAS  PubMed  Google Scholar 

  6. Cramer, P.E. et al. ApoE-directed therapeutics rapidly clear β-amyloid and reverse deficits in AD mouse models. Science 335, 1503–1506 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Selkoe, D.J. Resolving controversies on the path to Alzheimer's therapeutics. Nat. Med. 17, 1060–1065 (2011).

    CAS  PubMed  Google Scholar 

  8. De Strooper, B. Aph-1, Pen-2, and Nicastrin with Presenilin generate an active γ-Secretase complex. Neuron 38, 9–12 (2003).

    CAS  PubMed  Google Scholar 

  9. Bertram, L., Lill, C.M. & Tanzi, R.E. The genetics of Alzheimer disease: back to the future. Neuron 68, 270–281 (2010).

    CAS  PubMed  Google Scholar 

  10. Bekris, L.M., Yu, C.E., Bird, T.D. & Tsuang, D.W. Genetics of Alzheimer disease. J. Geriatr. Psychiatry Neurol. 23, 213–227 (2010).

    PubMed  PubMed Central  Google Scholar 

  11. Morris, J.C. et al. APOE predicts amyloid-β but not tau Alzheimer pathology in cognitively normal aging. Ann. Neurol. 67, 122–131 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Fredriksson, R. & Schioth, H.B. The repertoire of G-protein–coupled receptors in fully sequenced genomes. Mol. Pharmacol. 67, 1414–1425 (2005).

    CAS  PubMed  Google Scholar 

  13. Gudermann, T., Nurnberg, B. & Schultz, G. Receptors and G proteins as primary components of transmembrane signal transduction. Part 1. G-protein–coupled receptors: structure and function. J. Mol. Med. 73, 51–63 (1995).

    CAS  PubMed  Google Scholar 

  14. Watson, S.A.S. The G Protein-Coupled Receptor Factors Book (Academic, San Diego, 1994).

  15. Vassilatis, D.K. et al. The G protein–coupled receptor repertoires of human and mouse. Proc. Natl. Acad. Sci. USA 100, 4903–4908 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Thathiah, A. & De Strooper, B. The role of G protein–coupled receptors in the pathology of Alzheimer's disease. Nat. Rev. Neurosci. 12, 73–87 (2011).

    CAS  PubMed  Google Scholar 

  17. DeWire, S.M., Ahn, S., Lefkowitz, R.J. & Shenoy, S.K. β-arrestins and cell signaling. Annu. Rev. Physiol. 69, 483–510 (2007).

    CAS  PubMed  Google Scholar 

  18. Whalen, E.J., Rajagopal, S. & Lefkowitz, R.J. Therapeutic potential of β-arrestin– and G protein–biased agonists. Trends Mol. Med. 17, 126–139 (2011).

    CAS  PubMed  Google Scholar 

  19. Beaulieu, J.M. et al. An Akt/β-arrestin 2/PP2A signaling complex mediates dopaminergic neurotransmission and behavior. Cell 122, 261–273 (2005).

    CAS  PubMed  Google Scholar 

  20. Luan, B. et al. Deficiency of a β-arrestin–2 signal complex contributes to insulin resistance. Nature 457, 1146–1149 (2009).

    CAS  PubMed  Google Scholar 

  21. Beaulieu, J.M. et al. A β-arrestin 2 signaling complex mediates lithium action on behavior. Cell 132, 125–136 (2008).

    CAS  PubMed  Google Scholar 

  22. Shearman, M.S. et al. L-685,458, an aspartyl protease transition state mimic, is a potent inhibitor of amyloid β-protein precursor γ-secretase activity. Biochemistry 39, 8698–8704 (2000).

    CAS  PubMed  Google Scholar 

  23. Conner, D.A. et al. β-arrestin1 knockout mice appear normal but demonstrate altered cardiac responses to β-adrenergic stimulation. Circ. Res. 81, 1021–1026 (1997).

    CAS  PubMed  Google Scholar 

  24. Bohn, L.M. et al. Enhanced morphine analgesia in mice lacking β-arrestin 2. Science 286, 2495–2498 (1999).

    CAS  PubMed  Google Scholar 

  25. Ferguson, S.S. et al. Role of β-arrestin in mediating agonist-promoted G protein–coupled receptor internalization. Science 271, 363–366 (1996).

    CAS  PubMed  Google Scholar 

  26. Lohse, M.J., Lefkowitz, R.J., Caron, M.G. & Benovic, J.L. Inhibition of β-adrenergic receptor kinase prevents rapid homologous desensitization of β 2-adrenergic receptors. Proc. Natl. Acad. Sci. USA 86, 3011–3015 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Ahn, S., Shenoy, S.K., Wei, H. & Lefkowitz, R.J. Differential kinetic and spatial patterns of β-arrestin and G protein–mediated ERK activation by the angiotensin II receptor. J. Biol. Chem. 279, 35518–35525 (2004).

    CAS  PubMed  Google Scholar 

  28. Luttrell, L.M. et al. β-arrestin–dependent formation of β2 adrenergic receptor-Src protein kinase complexes. Science 283, 655–661 (1999).

    CAS  PubMed  Google Scholar 

  29. Thathiah, A. et al. The orphan G protein–coupled receptor 3 modulates amyloid-β peptide generation in neurons. Science 323, 946–951 (2009).

    CAS  PubMed  Google Scholar 

  30. Ni, Y. et al. Activation of β2-adrenergic receptor stimulates γ-secretase activity and accelerates amyloid plaque formation. Nat. Med. 12, 1390–1396 (2006).

    CAS  PubMed  Google Scholar 

  31. Teng, L., Zhao, J., Wang, F., Ma, L. & Pei, G.A. GPCR/secretase complex regulates β- and γ-secretase specificity for Aβ production and contributes to AD pathogenesis. Cell Res. 20, 138–153 (2010).

    CAS  PubMed  Google Scholar 

  32. Olson, K.R. & Eglen, R.M. β galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev. Technol. 5, 137–144 (2007).

    CAS  PubMed  Google Scholar 

  33. Gáborik, Z. et al. The role of a conserved region of the second intracellular loop in AT1 angiotensin receptor activation and signaling. Endocrinology 144, 2220–2228 (2003).

    PubMed  Google Scholar 

  34. Shenoy, S.K. et al. β-arrestin–dependent, G protein–independent ERK1/2 activation by the β2 adrenergic receptor. J. Biol. Chem. 281, 1261–1273 (2006).

    CAS  PubMed  Google Scholar 

  35. Wei, H. et al. Independent β-arrestin 2 and G protein–mediated pathways for angiotensin II activation of extracellular signal-regulated kinases 1 and 2. Proc. Natl. Acad. Sci. USA 100, 10782–10787 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. De Strooper, B. et al. Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature 391, 387–390 (1998).

    CAS  PubMed  Google Scholar 

  37. Mitani, Y. et al. Differential effects between γ-secretase inhibitors and modulators on cognitive function in amyloid precursor protein–transgenic and nontransgenic mice. J. Neurosci. 32, 2037–2050 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Chini, B. & Parenti, M. G-protein coupled receptors in lipid rafts and caveolae: how, when and why do they go there? J. Mol. Endocrinol. 32, 325–338 (2004).

    CAS  PubMed  Google Scholar 

  39. Vetrivel, K.S. et al. Association of γ-secretase with lipid rafts in post-Golgi and endosome membranes. J. Biol. Chem. 279, 44945–44954 (2004).

    CAS  PubMed  Google Scholar 

  40. Wada, S. et al. γ-secretase activity is present in rafts but is not cholesterol-dependent. Biochemistry 42, 13977–13986 (2003).

    CAS  PubMed  Google Scholar 

  41. Wahrle, S. et al. Cholesterol-dependent γ-secretase activity in buoyant cholesterol-rich membrane microdomains. Neurobiol. Dis. 9, 11–23 (2002).

    CAS  PubMed  Google Scholar 

  42. Yagishita, S., Morishima-Kawashima, M., Ishiura, S. & Ihara, Y. Aβ46 is processed to Aβ40 and Aβ43, but not to Aβ42, in the low density membrane domains. J. Biol. Chem. 283, 733–738 (2008).

    CAS  PubMed  Google Scholar 

  43. Chun, J., Yin, Y.I., Yang, G., Tarassishin, L. & Li, Y.M. Stereoselective synthesis of photoreactive peptidomimetic γ-secretase inhibitors. J. Org. Chem. 69, 7344–7347 (2004).

    CAS  PubMed  Google Scholar 

  44. Chau, D.M., Crump, C.J., Villa, J.C., Scheinberg, D.A. & Li, Y.M. Familial Alzheimer disease presenilin-1 mutations alter the active site conformation of γ-secretase. J. Biol. Chem. 287, 17288–17296 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Vetrivel, K.S. et al. Spatial segregation of γ-secretase and substrates in distinct membrane domains. J. Biol. Chem. 280, 25892–25900 (2005).

    CAS  PubMed  Google Scholar 

  46. Li, Y.M. et al. Presenilin 1 is linked with γ-secretase activity in the detergent solubilized state. Proc. Natl. Acad. Sci. USA 97, 6138–6143 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Esler, W.P. et al. Activity-dependent isolation of the presenilin–γ-secretase complex reveals nicastrin and a γ substrate. Proc. Natl. Acad. Sci. USA 99, 2720–2725 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Fraering, P.C. et al. Detergent-dependent dissociation of active γ-secretase reveals an interaction between Pen-2 and PS1-NTF and offers a model for subunit organization within the complex. Biochemistry 43, 323–333 (2004).

    CAS  PubMed  Google Scholar 

  49. Radde, R. et al. Aβ42-driven cerebral amyloidosis in transgenic mice reveals early and robust pathology. EMBO Rep. 7, 940–946 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Poulin, B. et al. The M3-muscarinic receptor regulates learning and memory in a receptor phosphorylation/arrestin-dependent manner. Proc. Natl. Acad. Sci. USA 107, 9440–9445 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Bohn, L.M., Gainetdinov, R.R., Lin, F.T., Lefkowitz, R.J. & Caron, M.G. Mu-opioid receptor desensitization by β-arrestin–2 determines morphine tolerance but not dependence. Nature 408, 720–723 (2000).

    CAS  PubMed  Google Scholar 

  52. De Strooper, B. et al. A presenilin-1–dependent γ-secretase–like protease mediates release of Notch intracellular domain. Nature 398, 518–522 (1999).

    CAS  PubMed  Google Scholar 

  53. Annaert, W.G. et al. Interaction with telencephalin and the amyloid precursor protein predicts a ring structure for presenilins. Neuron 32, 579–589 (2001).

    CAS  PubMed  Google Scholar 

  54. Esselens, C. et al. Presenilin 1 mediates the turnover of telencephalin in hippocampal neurons via an autophagic degradative pathway. J. Cell Biol. 166, 1041–1054 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Cai, H. et al. BACE1 is the major β-secretase for generation of Aβ peptides by neurons. Nat. Neurosci. 4, 233–234 (2001).

    CAS  PubMed  Google Scholar 

  56. Braak, H. & Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82, 239–259 (1991).

    CAS  PubMed  Google Scholar 

  57. Bossers, K. et al. Concerted changes in transcripts in the prefrontal cortex precede neuropathology in Alzheimer's disease. Brain 133, 3699–3723 (2010).

    PubMed  Google Scholar 

  58. Hébert, S.S. et al. Coordinated and widespread expression of γ-secretase in vivo: evidence for size and molecular heterogeneity. Neurobiol. Dis. 17, 260–272 (2004).

    PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to R.J. Lefkowitz and S. Ahn (Duke University Medical Center, Durham, North Carolina, USA) for the generous gift of the β-arrestin 2 wild-type and knockout mouse embryonic fibroblasts, the Arrb1/ and Arrb2/ mice, the β-arrestin 2–GFP-Flag cDNA and helpful discussion. We thank M. Jucker (University of Tübingen, Germany) for the gift of APP/PS1 transgenic mice. We greatly appreciate the kind gift of human control and Alzheimer's disease brain samples from K. Bossers and D.F. Swaab (Netherlands Institute for Neuroscience, Amsterdam, The Netherlands) and C. Troakes (the London Neurodegenerative Diseases Brain Bank, London, UK). We thank M. Mercken (Johnson & Johnson Pharmaceuticals Research and Development, Beerse, Belgium) for the antibodies to Aβ. We are grateful to Y. Li (Memorial Sloan Kettering Cancer Center, New York, USA) for the kind initial gift of JC-8. This work was supported by a Mentored New Investigator Research grant from the Alzheimer's Association to A.T., the Fund for Scientific Research Flanders, KU Leuven, a Methusalem grant from the KU Leuven and the Flemish government, and the Foundation for Alzheimer Research (SAO/FRMA) to B.D.S. B.D.S. is the Arthur Bax and Anna Vanluffelen chair for Alzheimer's disease.

Author information

Authors and Affiliations

Authors

Contributions

A.T. and B.D.S. designed the experiments and wrote the manuscript. A.T., K.H., A.S., E.V. and Y.H. conducted the experiments. M.C. conducted the qPCR experiments. G.D.K. synthesized JC-8. S.M. conducted the immunofluorescence image analysis.

Corresponding authors

Correspondence to Amantha Thathiah or Bart De Strooper.

Ethics declarations

Competing interests

B.D.S. receives research funding from and is a consultant for Janssen Pharmaceutica, Beerse, Belgium, Envivo, and Remynd, Leuven, Belgium. A.T. and B.D.S. are inventors on a patent that links β-arrestin to GPR3 and the γ-secretase complex, which is owned by VIB.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 1391 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Thathiah, A., Horré, K., Snellinx, A. et al. β-arrestin 2 regulates Aβ generation and γ-secretase activity in Alzheimer's disease. Nat Med 19, 43–49 (2013). https://doi.org/10.1038/nm.3023

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3023

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing