Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Maintenance of hematopoietic stem cells through regulation of Wnt and mTOR pathways

Abstract

Hematopoietic stem cell (HSC) self renewal and lineage commitment depend on complex interactions with the microenvironment. The ability to maintain or expand HSCs for clinical applications or basic research has been substantially limited because these interactions are not well defined. Recent evidence suggests that HSCs reside in a low-perfusion, reduced-nutrient niche and that nutrient-sensing pathways contribute to HSC homeostasis. Here we report that suppression of the mTOR pathway, an established nutrient sensor, combined with activation of canonical Wnt–β-catenin signaling, allows for the ex vivo maintenance of human and mouse long-term HSCs under cytokine-free conditions. We also show that the combination of two clinically approved medications that together activate Wnt–β-catenin and inhibit mTOR signaling increases the number (but not the proportion) of long-term HSCs in vivo.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Inhibition of GSK-3 and mTOR preserves hematopoietic stem and progenitor cells.
Figure 2: Maintenance of long-term HSCs ex vivo by inhibition of GSK-3 and mTOR.
Figure 3: Maintenance of human long-term HSCs in cytokine-free culture.
Figure 4: Maintenance of long-term HSCs in culture requires β-catenin.
Figure 5: Combined treatment with lithium and rapamycin increases the number of long-term HSCs in vivo.

References

  1. 1

    Weissman, I.L. Stem cells: units of development, units of regeneration, and units in evolution. Cell 100, 157–168 (2000).

    CAS  PubMed  Google Scholar 

  2. 2

    Purton, L.E. & Scadden, D.T. Limiting factors in murine hematopoietic stem cell assays. Cell Stem Cell 1, 263–270 (2007).

    CAS  Google Scholar 

  3. 3

    Orkin, S.H. & Zon, L.I. Hematopoiesis: an evolving paradigm for stem cell biology. Cell 132, 631–644 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4

    Chou, S., Chu, P., Hwang, W. & Lodish, H. Expansion of human cord blood hematopoietic stem cells for transplantation. Cell Stem Cell 7, 427–428 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Lymperi, S., Ferraro, F. & Scadden, D.T. The HSC niche concept has turned 31. Has our knowledge matured? Ann. NY Acad. Sci. 1192, 12–18 (2010).

    CAS  PubMed  Google Scholar 

  6. 6

    Bowman, T.V. & Zon, L.I. Lessons from the niche for generation and expansion of hematopoietic stem cells. Drug Discov. Today Ther. Strateg. 6, 135–140 (2009).

    PubMed  PubMed Central  Google Scholar 

  7. 7

    Parmar, K., Mauch, P., Vergilio, J.A., Sackstein, R. & Down, J.D. Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc. Natl. Acad. Sci. USA 104, 5431–5436 (2007).

    CAS  PubMed  Google Scholar 

  8. 8

    Simsek, T. et al. The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell 7, 380–390 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Miharada, K. et al. Cripto regulates hematopoietic stem cells as a hypoxic-niche–related factor through cell surface receptor GRP78. Cell Stem Cell 9, 330–344 (2011).

    CAS  PubMed  Google Scholar 

  10. 10

    Takubo, K. et al. Regulation of the HIF-1α level is essential for hematopoietic stem cells. Cell Stem Cell 7, 391–402 (2010).

    CAS  PubMed  Google Scholar 

  11. 11

    Krock, B., Skuli, N. & Simon, M.C. The tumor suppressor LKB1 emerges as a critical factor in hematopoietic stem cell biology. Cell Metab. 13, 8–10 (2011).

    CAS  PubMed  Google Scholar 

  12. 12

    Gan, B. et al. Lkb1 regulates quiescence and metabolic homeostasis of haematopoietic stem cells. Nature 468, 701–704 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Gurumurthy, S. et al. The Lkb1 metabolic sensor maintains haematopoietic stem cell survival. Nature 468, 659–663 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Nakada, D., Saunders, T.L. & Morrison, S.J. Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells. Nature 468, 653–658 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Yilmaz, O.H. et al. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 441, 475–482 (2006).

    CAS  PubMed  Google Scholar 

  16. 16

    Zhang, J. et al. PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature 441, 518–522 (2006).

    CAS  PubMed  Google Scholar 

  17. 17

    Chen, C. et al. TSC-mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species. J. Exp. Med. 205, 2397–2408 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Hofmeister, C.C., Zhang, J., Knight, K.L., Le, P. & Stiff, P.J. Ex vivo expansion of umbilical cord blood stem cells for transplantation: growing knowledge from the hematopoietic niche. Bone Marrow Transplant. 39, 11–23 (2007).

    CAS  PubMed  Google Scholar 

  19. 19

    Zhang, C.C., Kaba, M., Iizuka, S., Huynh, H. & Lodish, H.F. Angiopoietin-like 5 and IGFBP2 stimulate ex vivo expansion of human cord blood hematopoietic stem cells as assayed by NOD/SCID transplantation. Blood 111, 3415–3423 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Zhang, C.C. et al. Angiopoietin-like proteins stimulate ex vivo expansion of hematopoietic stem cells. Nat. Med. 12, 240–245 (2006).

    PubMed  PubMed Central  Google Scholar 

  21. 21

    Himburg, H.A. et al. Pleiotrophin regulates the expansion and regeneration of hematopoietic stem cells. Nat. Med. 16, 475–482 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Delaney, C. et al. Notch-mediated expansion of human cord blood progenitor cells capable of rapid myeloid reconstitution. Nat. Med. 16, 232–236 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Goessling, W. et al. Genetic interaction of PGE2 and Wnt signaling regulates developmental specification of stem cells and regeneration. Cell 136, 1136–1147 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Boitano, A.E. et al. Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells. Science 329, 1345–1348 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    Perry, J.M. et al. Cooperation between both Wnt/β-catenin and PTEN/PI3K/Akt signaling promotes primitive hematopoietic stem cell self-renewal and expansion. Genes Dev. 25, 1928–1942 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Zhang, C.C. & Lodish, H.F. Murine hematopoietic stem cells change their surface phenotype during ex vivo expansion. Blood 105, 4314–4320 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Staal, F.J., Burgering, B.M., van de Wetering, M. & Clevers, H.C. Tcf-1–mediated transcription in T lymphocytes: differential role for glycogen synthase kinase-3 in fibroblasts and T cells. Int. Immunol. 11, 317–323 (1999).

    CAS  PubMed  Google Scholar 

  28. 28

    Reya, T. & Clevers, H. Wnt signalling in stem cells and cancer. Nature 434, 843–850 (2005).

    CAS  PubMed  Google Scholar 

  29. 29

    Staal, F.J. & Sen, J.M. The canonical Wnt signaling pathway plays an important role in lymphopoiesis and hematopoiesis. Eur. J. Immunol. 38, 1788–1794 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    Malhotra, S. & Kincade, P.W. Wnt-related molecules and signaling pathway equilibrium in hematopoiesis. Cell Stem Cell 4, 27–36 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Sato, N., Meijer, L., Skaltsounis, L., Greengard, P. & Brivanlou, A.H. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3–specific inhibitor. Nat. Med. 10, 55–63 (2004).

    CAS  PubMed  Google Scholar 

  32. 32

    Trowbridge, J.J., Xenocostas, A., Moon, R.T. & Bhatia, M. Glycogen synthase kinase-3 is an in vivo regulator of hematopoietic stem cell repopulation. Nat. Med. 12, 89–98 (2006).

    CAS  PubMed  Google Scholar 

  33. 33

    Luis, T.C. et al. Canonical wnt signaling regulates hematopoiesis in a dosage-dependent fashion. Cell Stem Cell 9, 345–356 (2011).

    CAS  PubMed  Google Scholar 

  34. 34

    Luis, T.C. et al. Wnt3a deficiency irreversibly impairs hematopoietic stem cell self-renewal and leads to defects in progenitor cell differentiation. Blood 113, 546–554 (2009).

    CAS  PubMed  Google Scholar 

  35. 35

    Zhao, C. et al. Loss of β-catenin impairs the renewal of normal and CML stem cells in vivo. Cancer Cell 12, 528–541 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Fleming, H.E. et al. Wnt signaling in the niche enforces hematopoietic stem cell quiescence and is necessary to preserve self-renewal in vivo. Cell Stem Cell 2, 274–283 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Willert, K. et al. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423, 448–452 (2003).

    CAS  PubMed  Google Scholar 

  38. 38

    Reya, T. et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 423, 409–414 (2003).

    CAS  PubMed  Google Scholar 

  39. 39

    Cobas, M. β-catenin is dispensable for hematopoiesis and lymphopoiesis. J. Exp. Med. 199, 221–229 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Jeannet, G. et al. Long-term, multilineage hematopoiesis occurs in the combined absence of β-catenin and γ-catenin. Blood 111, 142–149 (2008).

    CAS  PubMed  Google Scholar 

  41. 41

    Koch, U. et al. Simultaneous loss of β- and γ-catenin does not perturb hematopoiesis or lymphopoiesis. Blood 111, 160–164 (2008).

    CAS  PubMed  Google Scholar 

  42. 42

    Kirstetter, P., Anderson, K., Porse, B.T., Jacobsen, S.E. & Nerlov, C. Activation of the canonical Wnt pathway leads to loss of hematopoietic stem cell repopulation and multilineage differentiation block. Nat. Immunol. 7, 1048–1056 (2006).

    CAS  PubMed  Google Scholar 

  43. 43

    Scheller, M. et al. Hematopoietic stem cell and multilineage defects generated by constitutive β-catenin activation. Nat. Immunol. 7, 1037–1047 (2006).

    CAS  PubMed  Google Scholar 

  44. 44

    Huang, J. et al. Pivotal role for Gsk3 in hematopoietic stem cell homeostasis in mice. J. Clin. Invest. 119, 3519–3529 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Inoki, K. et al. TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 126, 955–968 (2006).

    CAS  PubMed  Google Scholar 

  46. 46

    Holmes, R. & Zúñiga-Pflücker, J.C. The OP9–DL1 system: generation of T-lymphocytes from embryonic or hematopoietic stem cells in vitro. Cold Spring Harb. Protoc. published online, doi:10.1101/pdb.prot5156 (February 2009).

  47. 47

    Kodama, H., Nose, M., Niida, S., Nishikawa, S. & Nishikawa, S. Involvement of the c-Kit receptor in the adhesion of hematopoietic stem cells to stromal cells. Exp. Hematol. 22, 979–984 (1994).

    CAS  PubMed  Google Scholar 

  48. 48

    Zediak, V.P., Maillard, I. & Bhandoola, A. Multiple prethymic defects underlie age-related loss of T progenitor competence. Blood 110, 1161–1167 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Richie Ehrlich, L.I., Serwold, T. & Weissman, I.L. In vitro assays misrepresent in vivo lineage potentials of murine lymphoid progenitors. Blood 117, 2618–2624 (2011).

    PubMed  PubMed Central  Google Scholar 

  50. 50

    Maretto, S. et al. Mapping Wnt/β-catenin signaling during mouse development and in colorectal tumors. Proc. Natl. Acad. Sci. USA 100, 3299–3304 (2003).

    CAS  PubMed  Google Scholar 

  51. 51

    Castilho, R.M., Squarize, C.H., Chodosh, L.A., Williams, B.O. & Gutkind, J.S. mTOR mediates Wnt-induced epidermal stem cell exhaustion and aging. Cell Stem Cell 5, 279–289 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Boggs, D.R. & Joyce, R.A. The hematopoietic effects of lithium. Semin. Hematol. 20, 129–138 (1983).

    CAS  PubMed  Google Scholar 

  53. 53

    Ballin, A., Lehman, D., Sirota, P., Litvinjuk, U. & Meytes, D. Increased number of peripheral blood CD34+ cells in lithium-treated patients. Br. J. Haematol. 100, 219–221 (1998).

    CAS  PubMed  Google Scholar 

  54. 54

    Holmes, T. et al. Glycogen synthase kinase-3β inhibition preserves hematopoietic stem cell activity and inhibits leukemic cell growth. Stem Cells 26, 1288–1297 (2008).

    CAS  PubMed  Google Scholar 

  55. 55

    Polakis, P. Wnt signaling and cancer. Genes Dev. 14, 1837–1851 (2000).

    CAS  PubMed  Google Scholar 

  56. 56

    Wang, Y. et al. The Wnt/β-catenin pathway is required for the development of leukemia stem cells in AML. Science 327, 1650–1653 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    Cohen, Y., Chetrit, A., Sirota, P. & Modan, B. Cancer morbidity in psychiatric patients: influence of lithium carbonate treatment. Med. Oncol. 15, 32–36 (1998).

    CAS  PubMed  Google Scholar 

  58. 58

    Gattinoni, L. et al. A human memory T cell subset with stem cell–like properties. Nat. Med. 17, 1290–1297 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    Gattinoni, L., Klebanoff, C.A. & Restifo, N.P. Pharmacologic induction of CD8+ T cell memory: better living through chemistry. Sci. Transl. Med. 1, 11ps12 (2009).

    PubMed  PubMed Central  Google Scholar 

  60. 60

    Schmitt, T.M. & Zuniga-Pflucker, J.C. Induction of T cell development from hematopoietic progenitor cells by delta-like-1 in vitro. Immunity 17, 749–756 (2002).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank W. Tong, N. Speck, A. Bhandoola, A. Chi and H.-C. Huang for insightful comments and discussion. We also thank A. Bhandoola (University of Pennsylvania) for providing OP9 and OP9-DL1 cells. We thank J. Garskof, A. Christian and A. Mezochow for technical help and all members of the Klein lab for help and discussions. We specially thank A. Secreto and C. Keefer of the Stem Cell and Xenograft Core and Flow Cytometry and Cell Sorting Facility at the University of Pennsylvania for technical support. This study was supported by a grant from the Institute for Translational Medicine and Therapeutics (ITMAT) at the University of Pennsylvania and by grants from the US National Institutes of Health to P.S.K. (1R21HL107968-01 and 1R01HL110806-01). J.H. was supported by a Leukemia and Lymphoma Society Career Development Award and a K99 award from the US National Institutes of Health (1K99HL10774701). E.O.H. was supported by a grant from the US National Institutes of Health (1-K23-HL-093366-01A1). We also appreciate support from the Human Hematopoietic Stem Cell Center of Excellence (5P30DK090969-02) at the Children's Hospital of Philadelphia and the University of Pennsylvania.

Author information

Affiliations

Authors

Contributions

J.H. designed and performed experiments, interpreted data and wrote the manuscript. M.N.-M. performed experiments, interpreted data and contributed to the writing of the manuscript. E.O.H. contributed to the design and interpretation of experiments and the writing of the manuscript. G.D.-D. assisted with the design and interpretation of xenograft experiments. P.S.K. oversaw the design and interpretation of all experiments and the writing of the manuscript.

Corresponding author

Correspondence to Peter S Klein.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 7111 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Huang, J., Nguyen-McCarty, M., Hexner, E. et al. Maintenance of hematopoietic stem cells through regulation of Wnt and mTOR pathways. Nat Med 18, 1778–1785 (2012). https://doi.org/10.1038/nm.2984

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing