Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Inhibition of IL-12/IL-23 signaling reduces Alzheimer's disease–like pathology and cognitive decline

Abstract

The pathology of Alzheimer's disease has an inflammatory component that is characterized by upregulation of proinflammatory cytokines, particularly in response to amyloid-β (Aβ). Using the APPPS1 Alzheimer's disease mouse model, we found increased production of the common interleukin-12 (IL-12) and IL-23 subunit p40 by microglia. Genetic ablation of the IL-12/IL-23 signaling molecules p40, p35 or p19, in which deficiency of p40 or its receptor complex had the strongest effect, resulted in decreased cerebral amyloid load. Although deletion of IL-12/IL-23 signaling from the radiation-resistant glial compartment of the brain was most efficient in mitigating cerebral amyloidosis, peripheral administration of a neutralizing p40-specific antibody likewise resulted in a reduction of cerebral amyloid load in APPPS1 mice. Furthermore, intracerebroventricular delivery of antibodies to p40 significantly reduced the concentration of soluble Aβ species and reversed cognitive deficits in aged APPPS1 mice. The concentration of p40 was also increased in the cerebrospinal fluid of subjects with Alzheimer's disease, which suggests that inhibition of the IL-12/IL-23 pathway may attenuate Alzheimer's disease pathology and cognitive deficits.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Upregulation of inflammatory cytokines in the glial compartment of APPPS1 mice.
Figure 2: Genetic deletion of IL-12 and/or IL-23 subunits reduces Aβ plaque load in APPPS1 mice.
Figure 3: Genetic deletion of p40 reduces the Aβ plaque burden in APPPS1 mice without altering APP processing.
Figure 4: Deficiency of IL-12/IL-23 signaling in the radio-resistant compartment or peripheral p40-antibody treatment reduces Aβ plaque load in APPPS1 mice.
Figure 5: Intracerebroventricular delivery of p40-specific antibodies to aged APPPS1 mice ameliorates behavioral deficits.

References

  1. 1

    Querfurth, H.W. & LaFerla, F.M. Alzheimer's disease. N. Engl. J. Med. 362, 329–344 (2010).

    CAS  PubMed  Google Scholar 

  2. 2

    Steiner, H. & Haass, C. Intramembrane proteolysis by presenilins. Nat. Rev. Mol. Cell Biol. 1, 217–224 (2000).

    CAS  PubMed  Google Scholar 

  3. 3

    Hardy, J. & Selkoe, D.J. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297, 353–356 (2002).

    CAS  PubMed  Google Scholar 

  4. 4

    Ashe, K.H. & Zahs, K.R. Probing the biology of Alzheimer's disease in mice. Neuron 66, 631–645 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Streit, W.J., Mrak, R.E. & Griffin, W.S. Microglia and neuroinflammation: a pathological perspective. J. Neuroinflammation 1, 14 (2004).

    PubMed  PubMed Central  Google Scholar 

  6. 6

    Jucker, M. & Heppner, F.L. Cerebral and peripheral amyloid phagocytes—an old liaison with a new twist. Neuron 59, 8–10 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Grathwohl, S.A. et al. Formation and maintenance of Alzheimer's disease β-amyloid plaques in the absence of microglia. Nat. Neurosci. 12, 1361–1363 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8

    Hickman, S.E., Allison, E.K. & El Khoury, J. Microglial dysfunction and defective β-amyloid clearance pathways in aging Alzheimer's disease mice. J. Neurosci. 28, 8354–8360 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Wyss-Coray, T. Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat. Med. 12, 1005–1015 (2006).

    CAS  PubMed  Google Scholar 

  10. 10

    Liesz, A. et al. Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat. Med. 15, 192–199 (2009).

    CAS  PubMed  Google Scholar 

  11. 11

    He, P. et al. Deletion of tumor necrosis factor death receptor inhibits amyloid β generation and prevents learning and memory deficits in Alzheimer's mice. J. Cell Biol. 178, 829–841 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Eisenring, M., vom Berg, J., Kristiansen, G., Saller, E. & Becher, B. IL-12 initiates tumor rejection via lymphoid tissue–inducer cells bearing the natural cytotoxicity receptor NKp46. Nat. Immunol. 11, 1030–1038 (2010).

    CAS  PubMed  Google Scholar 

  13. 13

    Buonocore, S. et al. Innate lymphoid cells drive interleukin-23–dependent innate intestinal pathology. Nature 464, 1371–1375 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Radde, R. et al. Aβ42-driven cerebral amyloidosis in transgenic mice reveals early and robust pathology. EMBO Rep. 7, 940–946 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Magram, J. et al. IL-12–deficient mice are defective but not devoid of type 1 cytokine responses. Ann. NY Acad. Sci. 795, 60–70 (1996).

    CAS  PubMed  Google Scholar 

  16. 16

    Mattner, F. et al. Genetically resistant mice lacking interleukin-12 are susceptible to infection with Leishmania major and mount a polarized Th2 cell response. Eur. J. Immunol. 26, 1553–1559 (1996).

    CAS  PubMed  Google Scholar 

  17. 17

    Cua, D.J. et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421, 744–748 (2003).

    CAS  PubMed  Google Scholar 

  18. 18

    Miners, J.S. et al. Aβ-degrading enzymes in Alzheimer's disease. Brain Pathol. 18, 240–252 (2008).

    CAS  PubMed  Google Scholar 

  19. 19

    Greter, M. et al. Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis. Nat. Med. 11, 328–334 (2005).

    CAS  PubMed  Google Scholar 

  20. 20

    Wu, C., Ferrante, J., Gately, M.K. & Magram, J. Characterization of IL-12 receptor β1 chain (IL-12Rβ1)-deficient mice: IL-12Rβ1 is an essential component of the functional mouse IL-12 receptor. J. Immunol. 159, 1658–1665 (1997).

    CAS  PubMed  Google Scholar 

  21. 21

    Matthys, P. et al. Anti–IL-12 antibody prevents the development and progression of collagen-induced arthritis in IFN-γ receptor–deficient mice. Eur. J. Immunol. 28, 2143–2151 (1998).

    CAS  PubMed  Google Scholar 

  22. 22

    Town, T., Tan, J., Flavell, R.A. & Mullan, M. T-cells in Alzheimer's disease. Neuromolecular Med. 7, 255–264 (2005).

    CAS  PubMed  Google Scholar 

  23. 23

    Szekely, C.A. & Zandi, P.P. Non-steroidal anti-inflammatory drugs and Alzheimer's disease: the epidemiological evidence. CNS Neurol. Disord. Drug Targets 9, 132–139 (2010).

    CAS  PubMed  Google Scholar 

  24. 24

    Trinchieri, G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat. Rev. Immunol. 3, 133–146 (2003).

    CAS  PubMed  Google Scholar 

  25. 25

    Segal, B.M., Dwyer, B.K. & Shevach, E.M. An interleukin (IL)-10/IL-12 immunoregulatory circuit controls susceptibility to autoimmune disease. J. Exp. Med. 187, 537–546 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Romagnani, P., Annunziato, F., Baccari, M.C. & Parronchi, P. T cells and cytokines in Crohn′s disease. Curr. Opin. Immunol. 9, 793–799 (1997).

    CAS  PubMed  Google Scholar 

  27. 27

    Ghoreschi, K., Weigert, C. & Rocken, M. Immunopathogenesis and role of T cells in psoriasis. Clin. Dermatol. 25, 574–580 (2007).

    PubMed  Google Scholar 

  28. 28

    Guerreiro, R.J. et al. Peripheral inflammatory cytokines as biomarkers in Alzheimer′s disease and mild cognitive impairment. Neurodegener. Dis. 4, 406–412 (2007).

    CAS  PubMed  Google Scholar 

  29. 29

    Rentzos, M. et al. Interleukin-12 is reduced in cerebrospinal fluid of patients with Alzheimer′s disease and frontotemporal dementia. J. Neurol. Sci. 249, 110–114 (2006).

    CAS  PubMed  Google Scholar 

  30. 30

    Rota, E. et al. Increased intrathecal TGF-β1, but not IL-12, IFN-γ and IL-10 levels in Alzheimer′s disease patients. Neurol. Sci. 27, 33–39 (2006).

    CAS  PubMed  Google Scholar 

  31. 31

    Hu, W.T. et al. Plasma multianalyte profiling in mild cognitive impairment and Alzheimer disease. Neurology 79, 897–905 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Town, T. et al. Reduced Th1 and enhanced Th2 immunity after immunization with Alzheimer′s β-amyloid(1–42). J. Neuroimmunol. 132, 49–59 (2002).

    CAS  PubMed  Google Scholar 

  33. 33

    El Khoury, J. et al. Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nat. Med. 13, 432–438 (2007).

    CAS  PubMed  Google Scholar 

  34. 34

    Town, T. et al. Blocking TGF-β-Smad2/3 innate immune signaling mitigates Alzheimer-like pathology. Nat. Med. 14, 681–687 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Butovsky, O. et al. Glatiramer acetate fights against Alzheimer's disease by inducing dendritic-like microglia expressing insulin-like growth factor 1. Proc. Natl. Acad. Sci. USA 103, 11784–11789 (2006).

    CAS  PubMed  Google Scholar 

  36. 36

    Becher, B., Durell, B.G. & Noelle, R.J. IL-23 produced by CNS-resident cells controls T cell encephalitogenicity during the effector phase of experimental autoimmune encephalomyelitis. J. Clin. Invest. 112, 1186–1191 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Simard, A.R., Soulet, D., Gowing, G., Julien, J.P. & Rivest, S. Bone marrow–derived microglia play a critical role in restricting senile plaque formation in Alzheimer's disease. Neuron 49, 489–502 (2006).

    CAS  PubMed  Google Scholar 

  38. 38

    Ireland, D.D. & Reiss, C.S. Expression of IL-12 receptor by neurons. Viral Immunol. 17, 411–422 (2004).

    CAS  PubMed  Google Scholar 

  39. 39

    Lein, E.S. et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168–176 (2007).

    CAS  PubMed  Google Scholar 

  40. 40

    Wyss-Coray, T. et al. Adult mouse astrocytes degrade amyloid-β in vitro and in situ. Nat. Med. 9, 453–457 (2003).

    CAS  PubMed  Google Scholar 

  41. 41

    Koistinaho, M. et al. Apolipoprotein E promotes astrocyte colocalization and degradation of deposited amyloid-β peptides. Nat. Med. 10, 719–726 (2004).

    CAS  PubMed  Google Scholar 

  42. 42

    Kauffman, C.L. et al. A phase I study evaluating the safety, pharmacokinetics, and clinical response of a human IL-12 p40 antibody in subjects with plaque psoriasis. J. Invest. Dermatol. 123, 1037–1044 (2004).

    CAS  PubMed  Google Scholar 

  43. 43

    Gottlieb, A.B. et al. A phase 1, double-blind, placebo-controlled study evaluating single subcutaneous administrations of a human interleukin-12/23 monoclonal antibody in subjects with plaque psoriasis. Curr. Med. Res. Opin. 23, 1081–1092 (2007).

    CAS  PubMed  Google Scholar 

  44. 44

    Mannon, P.J. et al. Anti–interleukin-12 antibody for active Crohn′s disease. N. Engl. J. Med. 351, 2069–2079 (2004).

    CAS  PubMed  Google Scholar 

  45. 45

    Segal, B.M. et al. Repeated subcutaneous injections of IL12/23 p40 neutralising antibody, ustekinumab, in patients with relapsing-remitting multiple sclerosis: a phase II, double-blind, placebo-controlled, randomised, dose-ranging study. Lancet Neurol. 7, 796–804 (2008).

    CAS  PubMed  Google Scholar 

  46. 46

    Heppner, F.L. et al. Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nat. Med. 11, 146–152 (2005).

    CAS  PubMed  Google Scholar 

  47. 47

    Sahay, A. et al. Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature 472, 466–470 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Kawarabayashi, T. et al. Age-dependent changes in brain, CSF, and plasma amyloid (β) protein in the Tg2576 transgenic mouse model of Alzheimer's disease. J. Neurosci. 21, 372–381 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Herzig, M.C. et al. Aβ is targeted to the vasculature in a mouse model of hereditary cerebral hemorrhage with amyloidosis. Nat. Neurosci. 7, 954–960 (2004).

    CAS  PubMed  Google Scholar 

  50. 50

    Kornhuber, J. et al. Early and differential diagnosis of dementia and mild cognitive impairment: design and cohort baseline characteristics of the German Dementia Competence Network. Dement. Geriatr. Cogn. Disord. 27, 404–417 (2009).

    PubMed  Google Scholar 

  51. 51

    Schipke, C.G., Prokop, S., Heppner, F.L., Heuser, I. & Peters, O. Comparison of immunosorbent assays for the quantification of biomarkers for Alzheimer's disease in human cerebrospinal fluid. Dement. Geriatr. Cogn. Disord. 31, 139–145 (2011).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (SFB TRR 43 to F.L.H. and NeuroCure Exc 257 to F.L.H. and Y.W.), the Swiss national science foundation (B.B.), the Koetzer foundation (B.B.), a NeuroCure Exc 257 visiting fellowship (B.B.), the US National Institutes of Health (NINDS R01 NS046006 to F.L.H.) and the European Union (FP7 HEALTH, Project LUPAS to F.L.H.). J.v.B. is a member of the Neuroscience Center Zurich, and F.M. is a member of the Molecular Life Sciences Zurich. We thank P. Matylewski, C. Hempt, C. Klatt and C. Gehlhaar for excellent technical help, F. Hiemeyer for performing the ANOVA statistics, K. Saeger for scanning and processing of histological mouse slides and M. Jucker, University of Tübingen, for generously providing APPPS1 mice.

Author information

Affiliations

Authors

Contributions

F.L.H. and B.B. conceived and jointly directed the study, designed the experiments and cowrote the manuscript. J.v.B. and S.P. designed and performed the experiments and cowrote the manuscript. S.P., K.R.M. and J.O. performed icv treatment and behavioral experiments. Y.W. provided conceptual assistance with behavioral experiments. R.E.K., I.L.-C. and A.W. provided technical and conceptual assistance for histological and biochemical analyses. C.G.S. and O.P. provided technical and conceptual assistance for biochemical analyses of human CSF samples. F.M. supported the FACS analyses. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Burkhard Becher or Frank L Heppner.

Ethics declarations

Competing interests

F.L.H and B.B. hold a patent application by the University of Zurich and the Charité–Universitätsmedizin Berlin entitled “Modulators of IL-12 and/or IL-23 for the Prevention or Treatment of Alzheimer's Disease” (PCT/EP2012/050066).

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 (PDF 2214 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

vom Berg, J., Prokop, S., Miller, K. et al. Inhibition of IL-12/IL-23 signaling reduces Alzheimer's disease–like pathology and cognitive decline. Nat Med 18, 1812–1819 (2012). https://doi.org/10.1038/nm.2965

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing