Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Immunomodulatory glycan LNFPIII alleviates hepatosteatosis and insulin resistance through direct and indirect control of metabolic pathways

Abstract

Parasitic worms express host-like glycans to attenuate the immune response of human hosts. The therapeutic potential of this immunomodulatory mechanism in controlling the metabolic dysfunction that is associated with chronic inflammation remains unexplored. We demonstrate here that administration of lacto-N-fucopentaose III (LNFPIII), a LewisX-containing immunomodulatory glycan found in human milk and on parasitic helminths, improves glucose tolerance and insulin sensitivity in diet-induced obese mice. This effect is mediated partly through increased interleukin-10 (Il-10) production by LNFPIII-activated macrophages and dendritic cells, which reduces white adipose tissue inflammation and sensitizes the insulin response of adipocytes. Concurrently, LNFPIII treatment upregulates nuclear receptor subfamily 1, group H, member 4 (Fxr-α, also known as Nr1h4) to suppress lipogenesis in the liver, conferring protection against hepatosteatosis. At the signaling level, the extracellular signal-regulated kinase (Erk)-activator protein 1 (Ap1) pathway seems to mediate the effects of LNFPIII on both inflammatory and metabolic pathways. Our results suggest that LNFPIII may provide new therapeutic approaches to treat metabolic diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: LNFPIII increases Il-10 production and improves insulin sensitivity.
Figure 2: Reduced inflammation and enhanced insulin signaling in WAT of LNFPIII-treated mice.
Figure 3: LNFPIII-primed macrophage conditioned medium improves insulin sensitivity in 3T3-L1 adipocytes in an Il-10–dependent manner.
Figure 4: LNFPIII protects against hepatic steatosis induced by high-fat diet.
Figure 5: LNFPIII suppresses lipid synthesis through Fxr-α.
Figure 6: Induction of Fxr-α activity by LNFPIII is mediated by Erk-Ap1 signaling.

Similar content being viewed by others

References

  1. Gregor, M.F. & Hotamisligil, G.S. Inflammatory mechanisms in obesity. Annu. Rev. Immunol. 29, 415–445 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Arkan, M.C. et al. IKK-β links inflammation to obesity-induced insulin resistance. Nat. Med. 11, 191–198 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Cai, D. et al. Local and systemic insulin resistance resulting from hepatic activation of IKK-β and NF-κB. Nat. Med. 11, 183–190 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chiang, S.H. et al. The protein kinase IKKɛ regulates energy balance in obese mice. Cell 138, 961–975 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nakamura, T. et al. Double-stranded RNA-dependent protein kinase links pathogen sensing with stress and metabolic homeostasis. Cell 140, 338–348 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shi, H. et al. TLR4 links innate immunity and fatty acid–induced insulin resistance. J. Clin. Invest. 116, 3015–3025 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Vandanmagsar, B. et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat. Med. 17, 179–188 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wen, H. et al. Fatty acid–induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat. Immunol. 12, 408–415 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Feuerer, M. et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat. Med. 15, 930–939 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kang, K. et al. Adipocyte-derived Th2 cytokines and myeloid PPARδ regulate macrophage polarization and insulin sensitivity. Cell Metab. 7, 485–495 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nishimura, S. et al. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat. Med. 15, 914–920 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Odegaard, J.I. et al. Alternative M2 activation of Kupffer cells by PPARδa ameliorates obesity-induced insulin resistance. Cell Metab. 7, 496–507 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Winer, S. et al. Normalization of obesity-associated insulin resistance through immunotherapy. Nat. Med. 15, 921–929 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Weisberg, S.P. et al. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112, 1796–1808 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Xu, H. et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Invest. 112, 1821–1830 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lumeng, C.N., Bodzin, J.L. & Saltiel, A.R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest. 117, 175–184 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gordon, S. Alternative activation of macrophages. Nat. Rev. Immunol. 3, 23–35 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Wu, D. et al. Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science 332, 243–247 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Odegaard, J.I. et al. Macrophage-specific PPARγ controls alternative activation and improves insulin resistance. Nature 447, 1116–1120 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hong, E.G. et al. Interleukin-10 prevents diet-induced insulin resistance by attenuating macrophage and cytokine response in skeletal muscle. Diabetes 58, 2525–2535 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Herbert, D.R. et al. Alternative macrophage activation is essential for survival during schistosomiasis and downmodulates T helper 1 responses and immunopathology. Immunity 20, 623–635 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Grzych, J.M. et al. Egg deposition is the major stimulus for the production of Th2 cytokines in murine schistosomiasis mansoni. J. Immunol. 146, 1322–1327 (1991).

    CAS  PubMed  Google Scholar 

  23. Okano, M., Satoskar, A.R., Nishizaki, K., Abe, M. & Harn, D.A. Jr. Induction of Th2 responses and IgE is largely due to carbohydrates functioning as adjuvants on Schistosoma mansoni egg antigens. J. Immunol. 163, 6712–6717 (1999).

    CAS  PubMed  Google Scholar 

  24. Atochina, O., Daly-Engel, T., Piskorska, D., McGuire, E. & Harn, D.A. A schistosome-expressed immunomodulatory glycoconjugate expands peritoneal Gr1+ macrophages that suppress naive CD4+ T cell proliferation via an IFN-γ and nitric oxide–dependent mechanism. J. Immunol. 167, 4293–4302 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Everts, B. et al. Omega-1, a glycoprotein secreted by Schistosoma mansoni eggs, drives Th2 responses. J. Exp. Med. 206, 1673–1680 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Steinfelder, S. et al. The major component in schistosome eggs responsible for conditioning dendritic cells for Th2 polarization is a T2 ribonuclease (omega-1). J. Exp. Med. 206, 1681–1690 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Van der Kleij, D. et al. Triggering of innate immune responses by schistosome egg glycolipids and their carbohydrate epitope GalNAcβ1–4(Fucα1–2Fucα1–3)GlcNAc. J. Infect. Dis. 185, 531–539 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Ko, A.I., Drager, U.C. & Harn, D.A. A Schistosoma mansoni epitope recognized by a protective monoclonal antibody is identical to the stage-specific embryonic antigen 1. Proc. Natl. Acad. Sci. USA 87, 4159–4163 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Stahl, B. et al. Oligosaccharides from human milk as revealed by matrix-assisted laser desorption/ionization mass spectrometry. Anal. Biochem. 223, 218–226 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Atochina, O., Da'dara, A.A., Walker, M. & Harn, D.A. The immunomodulatory glycan LNFPIII initiates alternative activation of murine macrophages in vivo. Immunology 125, 111–121 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Harn, D.A., McDonald, J., Atochina, O. & Da'dara, A.A. Modulation of host immune responses by helminth glycans. Immunol. Rev. 230, 247–257 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Dutta, P. et al. Lacto-N-fucopentaose III, a pentasaccharide, prolongs heart transplant survival. Transplantation 90, 1071–1078 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. van Liempt, E. et al. Schistosoma mansoni soluble egg antigens are internalized by human dendritic cells through multiple C-type lectins and suppress TLR-induced dendritic cell activation. Mol. Immunol. 44, 2605–2615 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Thomas, P.G. et al. Maturation of dendritic cell 2 phenotype by a helminth glycan uses a Toll-like receptor 4–dependent mechanism. J. Immunol. 171, 5837–5841 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Schnoeller, C. et al. A helminth immunomodulator reduces allergic and inflammatory responses by induction of IL-10–producing macrophages. J. Immunol. 180, 4265–4272 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Dillon, S. et al. A Toll-like receptor 2 ligand stimulates Th2 responses in vivo, via induction of extracellular signal-regulated kinase mitogen-activated protein kinase and c-Fos in dendritic cells. J. Immunol. 172, 4733–4743 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Repa, J.J. et al. Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRα and LXRβ. Genes Dev. 14, 2819–2830 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Watanabe, M. et al. Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. J. Clin. Invest. 113, 1408–1418 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang, Y., Kast-Woelbern, H.R. & Edwards, P.A. Natural structural variants of the nuclear receptor farnesoid X receptor affect transcriptional activation. J. Biol. Chem. 278, 104–110 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Zaccone, P., Fehervari, Z., Phillips, J.M., Dunne, D.W. & Cooke, A. Parasitic worms and inflammatory diseases. Parasite Immunol. 28, 515–523 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dunne, D.W. & Cooke, A. A worm's eye view of the immune system: consequences for evolution of human autoimmune disease. Nat. Rev. Immunol. 5, 420–426 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Hesse, M. et al. The pathogenesis of schistosomiasis is controlled by cooperating IL-10–producing innate effector and regulatory T cells. J. Immunol. 172, 3157–3166 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Bassols, J. et al. Environmental and genetic factors influence the relationship between circulating IL-10 and obesity phenotypes. Obesity (Silver Spring) 18, 611–618 (2010).

    Article  CAS  Google Scholar 

  44. Chang, Y.H., Huang, C.N., Wu, C.Y. & Shiau, M.Y. Association of interleukin-10 A-592C and T-819C polymorphisms with type 2 diabetes mellitus. Hum. Immunol. 66, 1258–1263 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Kowalski, G.M. et al. Deficiency of haematopoietic-cell–derived IL-10 does not exacerbate high-fat-diet–induced inflammation or insulin resistance in mice. Diabetologia 54, 888–899 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Brüning, J.C. et al. A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance. Mol. Cell 2, 559–569 (1998).

    Article  PubMed  Google Scholar 

  47. Kim, J.K. et al. Redistribution of substrates to adipose tissue promotes obesity in mice with selective insulin resistance in muscle. J. Clin. Invest. 105, 1791–1797 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shepherd, P.R. et al. Adipose cell hyperplasia and enhanced glucose disposal in transgenic mice overexpressing GLUT4 selectively in adipose tissue. J. Biol. Chem. 268, 22243–22246 (1993).

    Article  CAS  PubMed  Google Scholar 

  49. Herman, M.A. et al. A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism. Nature 484, 333–338 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cao, H. et al. Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell 134, 933–944 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Porte, D. Jr., Baskin, D.G. & Schwartz, M.W. Insulin signaling in the central nervous system: a critical role in metabolic homeostasis and disease from C. elegans to humans. Diabetes 54, 1264–1276 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Lefebvre, P., Cariou, B., Lien, F., Kuipers, F. & Staels, B. Role of bile acids and bile acid receptors in metabolic regulation. Physiol. Rev. 89, 147–191 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Berriman, M. et al. The genome of the blood fluke Schistosoma mansoni. Nature 460, 352–358 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Badr, S.G., Pica-Mattoccia, L., Moroni, R., Angelico, M. & Cioli, D. Effect of bile salts on oviposition in vitro by Schistosoma mansoni. Parasitol. Res. 85, 421–423 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. Wang, Y.D. et al. Farnesoid X receptor antagonizes nuclear factor κB in hepatic inflammatory response. Hepatology 48, 1632–1643 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Harnett, W. & Harnett, M.M. Helminth-derived immunomodulators: can understanding the worm produce the pill? Nat. Rev. Immunol. 10, 278–284 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Harn, D.A., Mitsuyama, M. & David, J.R. Schistosoma mansoni. Anti-egg monoclonal antibodies protect against cercarial challenge in vivo. J. Exp. Med. 159, 1371–1387 (1984).

    Article  CAS  PubMed  Google Scholar 

  58. Foss-Freitas, M.C. & Foss, M.C. Comparison of the homeostasis model assessment and quantitative insulin sensitivity check index with data from forearm metabolic studies for the in vivo assessment of insulin sensitivity. Braz. J. Med. Biol. Res. 37, 663–668 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Liu, S. et al. Role of peroxisome proliferator–activated receptor δ/β in hepatic metabolic regulation. J. Biol. Chem. 286, 1237–1247 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Reilly, S.M. et al. Nuclear receptor corepressor SMRT regulates mitochondrial oxidative metabolism and mediates aging-related metabolic deterioration. Cell Metab. 12, 643–653 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank E. Hu and S.M. Reilly for technical support and T. Horng (Harvard School of Public Health) for providing reagents. P. Bhargava and K. Stanya were supported by a US National Institutes of Health training grant (T32ES016645). This work was supported by the American Diabetes Association, the American Heart Association and a US National Institutes of Health grant (R01AI056484, D.A.H. and R01DK075046, C.-H.L.).

Author information

Authors and Affiliations

Authors

Contributions

P.B. was involved in experimental design and execution, data analyses and manuscript preparation. K.J.S., M.R.G. and C.L. conducted GTTs and ITTs with P.B. D.J. and L.D. provided technical assistance. S.L. assisted in hepatocyte isolations. C.L. provided LNFPIII and SEA preparations. D.A.H. helped with experimental design, data interpretation and manuscript writing. C.-H.L. directed the project, participated in data analyses and interpretation and wrote the manuscript.

Corresponding authors

Correspondence to Donald A Harn or Chih-Hao Lee.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Table 1 (PDF 4687 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhargava, P., Li, C., Stanya, K. et al. Immunomodulatory glycan LNFPIII alleviates hepatosteatosis and insulin resistance through direct and indirect control of metabolic pathways. Nat Med 18, 1665–1672 (2012). https://doi.org/10.1038/nm.2962

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2962

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing