Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The sirtuin SIRT6 blocks IGF-Akt signaling and development of cardiac hypertrophy by targeting c-Jun

Abstract

Abnormal activation of insulin-like growth factor (IGF)-Akt signaling is implicated in the development of various diseases, including heart failure. However, the molecular mechanisms that regulate activation of this signaling pathway are not completely understood. Here we show that sirtuin 6 (SIRT6), a nuclear histone deacetylase, functions at the level of chromatin to directly attenuate IGF-Akt signaling. SIRT6-deficient mice developed cardiac hypertrophy and heart failure, whereas SIRT6 transgenic mice were protected from hypertrophic stimuli, indicating that SIRT6 acts as a negative regulator of cardiac hypertrophy. SIRT6-deficient mouse hearts showed hyperactivation of IGF signaling–related genes and their downstream targets. Mechanistically, SIRT6 binds to and suppresses the promoter of IGF signaling–related genes by interacting with c-Jun and deacetylating histone 3 at Lys9 (H3K9). We also found reduced SIRT6 expression in human failing hearts. These findings disclose a new link between SIRT6 and IGF-Akt signaling and implicate SIRT6 in the development of cardiac hypertrophy and failure.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: SIRT6 deficiency causes cardiac hypertrophy and degenerative changes in the heart.
Figure 2: Cardiac-specific deletion of SIRT6 causes cardiac hypertrophy and fibrosis.
Figure 3: SIRT6 overexpression blocks the cardiac hypertrophic response.
Figure 4: SIRT6 is a negative regulator of IGF signaling.
Figure 5: SIRT6 is a co-repressor of c-Jun transcriptional activity.
Figure 6: Inhibition of c-Jun or IGF signaling blocks hypertrophy of SIRT6-deficient hearts.

References

  1. 1

    Lloyd-Jones, D. et al. Heart disease and stroke statistics—2010 update: a report from the American Heart Association. Circulation 121, e46–e215 (2010).

    PubMed  Google Scholar 

  2. 2

    Donmez, G. & Guarente, L. Aging and disease: connections to sirtuins. Aging Cell 9, 285–290 (2010).

    CAS  Article  Google Scholar 

  3. 3

    Kahn, A.J. Development, aging, and life duration: effects of nutrient restriction. Am. J. Clin. Nutr. 25, 822–828 (1972).

    CAS  Article  Google Scholar 

  4. 4

    Fontana, L., Partridge, L. & Longo, V.D. Extending healthy life span—from yeast to humans. Science 328, 321–326 (2010).

    CAS  Article  Google Scholar 

  5. 5

    Weiss, E.P. & Fontana, L. Caloric restriction: powerful protection for the aging heart and vasculature. Am. J. Physiol. Heart Circ. Physiol. 301, H1205–H1219 (2011).

    CAS  Article  Google Scholar 

  6. 6

    Haigis, M.C. & Guarente, L.P. Mammalian sirtuins—emerging roles in physiology, aging, and calorie restriction. Genes Dev. 20, 2913–2921 (2006).

    CAS  Article  Google Scholar 

  7. 7

    Kanfi, Y. et al. SIRT6 protects against pathological damage caused by diet-induced obesity. Aging Cell 9, 162–173 (2010).

    CAS  Article  Google Scholar 

  8. 8

    Kawahara, T.L. et al. SIRT6 links histone H3 lysine 9 deacetylation to NF-κB–dependent gene expression and organismal life span. Cell 136, 62–74 (2009).

    CAS  Article  Google Scholar 

  9. 9

    Kim, H.S. et al. Hepatic-specific disruption of SIRT6 in mice results in fatty liver formation due to enhanced glycolysis and triglyceride synthesis. Cell Metab. 12, 224–236 (2010).

    CAS  Article  Google Scholar 

  10. 10

    Michishita, E. et al. SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature 452, 492–496 (2008).

    CAS  Article  Google Scholar 

  11. 11

    Michishita, E., Park, J.Y., Burneskis, J.M., Barrett, J.C. & Horikawa, I. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol. Biol. Cell 16, 4623–4635 (2005).

    CAS  Article  Google Scholar 

  12. 12

    Mostoslavsky, R. et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 124, 315–329 (2006).

    CAS  Article  Google Scholar 

  13. 13

    Zhong, L. et al. The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1α. Cell 140, 280–293 (2010).

    CAS  Article  Google Scholar 

  14. 14

    Xiao, C. et al. SIRT6 deficiency results in severe hypoglycemia by enhancing both basal and insulin-stimulated glucose uptake in mice. J. Biol. Chem. 285, 36776–36784 (2010).

    CAS  Article  Google Scholar 

  15. 15

    Holzenberger, M. et al. IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 421, 182–187 (2003).

    CAS  Article  Google Scholar 

  16. 16

    Matsui, T. et al. Phenotypic spectrum caused by transgenic overexpression of activated Akt in the heart. J. Biol. Chem. 277, 22896–22901 (2002).

    CAS  Article  Google Scholar 

  17. 17

    Matsui, T., Nagoshi, T. & Rosenzweig, A. Akt and PI 3-kinase signaling in cardiomyocyte hypertrophy and survival. Cell Cycle 2, 220–223 (2003).

    CAS  Article  Google Scholar 

  18. 18

    Kostin, S., Hein, S., Arnon, E., Scholz, D. & Schaper, J. The cytoskeleton and related proteins in the human failing heart. Heart Fail. Rev. 5, 271–280 (2000).

    CAS  Article  Google Scholar 

  19. 19

    Sundaresan, N.R. et al. The deacetylase SIRT1 promotes membrane localization and activation of Akt and PDK1 during tumorigenesis and cardiac hypertrophy. Sci. Signal. 4, ra46–ra58 (2011).

    CAS  Article  Google Scholar 

  20. 20

    Hess, J., Angel, P. & Schorpp-Kistner, M. AP-1 subunits: quarrel and harmony among siblings. J. Cell Sci. 117, 5965–5973 (2004).

    CAS  Article  Google Scholar 

  21. 21

    Chiu, Y.C. et al. Peptidoglycan enhances IL-6 production in human synovial fibroblasts via TLR2 receptor, focal adhesion kinase, Akt, and AP-1–dependent pathway. J. Immunol. 183, 2785–2792 (2009).

    CAS  Article  Google Scholar 

  22. 22

    Gallagher, E.J. & LeRoith, D. The proliferating role of insulin and insulin-like growth factors in cancer. Trends Endocrinol. Metab. 21, 610–618 (2010).

    CAS  Article  Google Scholar 

  23. 23

    Gatenby, V.K. & Kearney, M.T. The role of IGF-1 resistance in obesity and type 2 diabetes-mellitus–related insulin resistance and vascular disease. Expert Opin. Ther. Targets 14, 1333–1342 (2010).

    CAS  Article  Google Scholar 

  24. 24

    Glass, D.J. PI3 kinase regulation of skeletal muscle hypertrophy and atrophy. Curr. Top. Microbiol. Immunol. 346, 267–278 (2010).

    CAS  PubMed  Google Scholar 

  25. 25

    Freude, S., Schilbach, K. & Schubert, M. The role of IGF-1 receptor and insulin receptor signaling for the pathogenesis of Alzheimer's disease: from model organisms to human disease. Curr. Alzheimer Res. 6, 213–223 (2009).

    CAS  Article  Google Scholar 

  26. 26

    Haq, S. et al. Differential activation of signal transduction pathways in human hearts with hypertrophy versus advanced heart failure. Circulation 103, 670–677 (2001).

    CAS  Article  Google Scholar 

  27. 27

    Chu, C.H. et al. Activation of insulin-like growth factor II receptor induces mitochondrial-dependent apoptosis through Gαq and downstream calcineurin signaling in myocardial cells. Endocrinology 150, 2723–2731 (2009).

    CAS  Article  Google Scholar 

  28. 28

    Chao, W. & D'Amore, P.A. IGF2: epigenetic regulation and role in development and disease. Cytokine Growth Factor Rev. 19, 111–120 (2008).

    CAS  Article  Google Scholar 

  29. 29

    Zaina, S. et al. Shortened life span, bradycardia, and hypotension in mice with targeted expression of an Igf2 transgene in smooth muscle cells. Endocrinology 144, 2695–2703 (2003).

    CAS  Article  Google Scholar 

  30. 30

    Eferl, R. et al. Functions of c-Jun in liver and heart development. J. Cell Biol. 145, 1049–1061 (1999).

    CAS  Article  Google Scholar 

  31. 31

    Schunkert, H., Jahn, L., Izumo, S., Apstein, C.S. & Lorell, B.H. Localization and regulation of c-fos and c-jun protooncogene induction by systolic wall stress in normal and hypertrophied rat hearts. Proc. Natl. Acad. Sci. USA 88, 11480–11484 (1991).

    CAS  Article  Google Scholar 

  32. 32

    Iwaki, K., Sukhatme, V.P., Shubeita, H.E. & Chien, K.R. α- and β-adrenergic stimulation induces distinct patterns of immediate early gene expression in neonatal rat myocardial cells. fos/jun expression is associated with sarcomere assembly; Egr-1 induction is primarily an α 1–mediated response. J. Biol. Chem. 265, 13809–13817 (1990).

    CAS  PubMed  Google Scholar 

  33. 33

    Takemoto, Y. et al. Increased JNK, AP-1 and NF-κB DNA binding activities in isoproterenol-induced cardiac remodeling. J. Mol. Cell. Cardiol. 31, 2017–2030 (1999).

    CAS  Article  Google Scholar 

  34. 34

    Nadruz, W. Jr., Corat, M.A., Marin, T.M., Guimaraes Pereira, G.A. & Franchini, K.G. Focal adhesion kinase mediates MEF2 and c-Jun activation by stretch: role in the activation of the cardiac hypertrophic genetic program. Cardiovasc. Res. 68, 87–97 (2005).

    CAS  Article  Google Scholar 

  35. 35

    Reiss, K. et al. ANG II receptors, c-myc, and c-jun in myocytes after myocardial infarction and ventricular failure. Am. J. Physiol. 264, H760–H769 (1993).

    CAS  PubMed  Google Scholar 

  36. 36

    Freire, G., Ocampo, C., Ilbawi, N., Griffin, A.J. & Gupta, M. Overt expression of AP-1 reduces α myosin heavy chain expression and contributes to heart failure from chronic volume overload. J. Mol. Cell Cardiol. 43, 465–478 (2007).

    CAS  Article  Google Scholar 

  37. 37

    Kim, H.J. et al. Modulation of redox-sensitive transcription factors by calorie restriction during aging. Mech. Ageing Dev. 123, 1589–1595 (2002).

    CAS  Article  Google Scholar 

  38. 38

    Jung, K.J. et al. Effect of short term calorie restriction on pro-inflammatory NF-κB and AP-1 in aged rat kidney. Inflamm. Res. 58, 143–150 (2009).

    CAS  Article  Google Scholar 

  39. 39

    Cohen, H.Y. et al. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305, 390–392 (2004).

    CAS  Article  Google Scholar 

  40. 40

    Kanfi, Y. et al. Regulation of SIRT6 protein levels by nutrient availability. FEBS Lett. 582, 543–548 (2008).

    CAS  Article  Google Scholar 

  41. 41

    Hirschey, M.D. et al. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 464, 121–125 (2010).

    CAS  Article  Google Scholar 

  42. 42

    Sundaresan, N.R. et al. The deacetylase SIRT1 promotes membrane localization and activation of Akt and PDK1 during tumorigenesis and cardiac hypertrophy. Sci. Signal. 4, ra46 (2011).

    CAS  Article  Google Scholar 

  43. 43

    Sundaresan, N.R. et al. Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J. Clin. Invest. 119, 2758–2771 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Kanfi, Y. et al. The sirtuin SIRT6 regulates lifespan in male mice. Nature 483, 218–221 (2012).

    CAS  Article  Google Scholar 

  45. 45

    Zhang, C.L. et al. Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell 110, 479–488 (2002).

    CAS  Article  Google Scholar 

  46. 46

    Sundaresan, N.R., Samant, S.A., Pillai, V.B., Rajamohan, S.B. & Gupta, M.P. SIRT3 is a stress-responsive deacetylase in cardiomyocytes that protects cells from stress-mediated cell death by deacetylation of Ku70. Mol. Cell. Biol. 28, 6384–6401 (2008).

    CAS  Article  Google Scholar 

  47. 47

    Pillai, J.B. et al. Activation of SIRT1, a class III histone deacetylase, contributes to fructose feeding-mediated induction of the α-myosin heavy chain expression. Am. J. Physiol. Heart Circ. Physiol. 294, H1388–H1397 (2008).

    CAS  Article  Google Scholar 

  48. 48

    Wu, C.L., Kandarian, S.C. & Jackman, R.W. Identification of genes that elicit disuse muscle atrophy via the transcription factors p50 and Bcl-3. PLoS ONE 6, e16171 (2011).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank F. Alt, Harvard Medical School, for providing SIRT6 knockout mice, E. Verdin, University of California, San Francisco, for providing Flag-SIRT6 wild-type and mutant plasmids, F. VanGool, Institut de Biologie, Universite Libre de Bruxelles, Gosselies, Belgium, for providing mouse-SIRT6 expression plasmid and K. Chua, Stanford University, for providing SIRT6 retroviral vectors and SIRT6 knockout MEFs. The α-MHC promoter vector used to make cardiac-specific SIRT6 transgenic mice was provided by J. Robbins, University of Cincinnati. This study was supported by US National Institutes of Health grants RO1 HL-117041, HL-83423 and 111455 to M.P.G. N.R.S. was supported by a postdoctoral fellowship from the American Heart Association.

Author information

Affiliations

Authors

Contributions

N.R.S. and M.P.G. designed the study and wrote the manuscript. N.R.S. performed the majority of experiments. P.V. performed the ChIP experiments. L.Z. analyzed tissue microarray data. G.K. did echocardiography of mice. S.S. analyzed human samples and performed electron microscopy. V.P. performed in silico analysis and identified c-Jun target genes. V.B.P. performed experiments with IGF1R inhibitors. P.V.R. generated transgenic mice and did in vitro hypertrophy experiments. M.G. analyzed cardiac fetal gene program and cell death markers. V.J. provided human cardiac tissue samples during surgery. J.M.C. planned and supervised ChIP experiments. C.-X.D. provided Sirt6loxP mice. D.B.L. provided heart samples from SIRT6-MCK-Cre mice and participated in discussing experiments. R.M. provided microarray data and discussed the whole study multiple times. M.P.G. coordinated with different investigators, supervised the whole study and generated the final draft of the manuscript.

Corresponding author

Correspondence to Mahesh P Gupta.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–15 and Supplementary Tables 1 and 2 (PDF 2455 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sundaresan, N., Vasudevan, P., Zhong, L. et al. The sirtuin SIRT6 blocks IGF-Akt signaling and development of cardiac hypertrophy by targeting c-Jun. Nat Med 18, 1643–1650 (2012). https://doi.org/10.1038/nm.2961

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing