Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

NOTCH1 promotes T cell leukemia-initiating activity by RUNX-mediated regulation of PKC-θ and reactive oxygen species

Abstract

Reactive oxygen species (ROS), a byproduct of cellular metabolism, damage intracellular macromolecules and, when present in excess, can promote normal hematopoietic stem cell differentiation and exhaustion1,2,3. However, mechanisms that regulate the amount of ROS in leukemia-initiating cells (LICs) and the biological role of ROS in these cells are largely unknown. We show here that the ROSlow subset of CD44+ cells in T cell acute lymphoblastic leukemia (T-ALL), a malignancy of immature T cell progenitors, is highly enriched in the most aggressive LICs and that ROS accumulation is restrained by downregulation of protein kinase C θ (PKC-θ). Notably, primary mouse T-ALLs lacking PKC-θ show improved LIC activity, whereas enforced PKC-θ expression in both mouse and human primary T-ALLs compromised LIC activity. We also show that PKC-θ is regulated by a new pathway in which NOTCH1 induces runt-related transcription factor 3 (RUNX3), RUNX3 represses RUNX1 and RUNX1 induces PKC-θ. NOTCH1, which is frequently activated by mutation in T-ALL4,5,6 and required for LIC activity in both mouse and human models7,8, thus acts to repress PKC-θ. These results reveal key functional roles for PKC-θ and ROS in T-ALL and suggest that aggressive biological behavior in vivo could be limited by therapeutic strategies that promote PKC-θ expression or activity, or the accumulation of ROS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: LICs in T-ALL are characterized by low amounts of ROS.
Figure 2: PKC-θ dictates the amount of ROS and is asymmetrically distributed to LIC-depleted cell fractions.
Figure 3: Increased PKC-θ expression compromises disease reconstitution in vivo.
Figure 4: NOTCH1 represses PKC-θ and ROS through RUNX3 and RUNX1.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Ito, K. et al. Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat. Med. 12, 446–451 (2006).

    CAS  PubMed  Google Scholar 

  2. Owusu-Ansah, E. & Banerjee, U. Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation. Nature 461, 537–541 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Tothova, Z. et al. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 128, 325–339 (2007).

    CAS  PubMed  Google Scholar 

  4. O′Neil, J. et al. FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to γ-secretase inhibitors. J. Exp. Med. 204, 1813–1824 (2007).

    PubMed  PubMed Central  Google Scholar 

  5. Thompson, B.J. et al. The SCFFBW7 ubiquitin ligase complex as a tumor suppressor in T cell leukemia. J. Exp. Med. 204, 1825–1835 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Weng, A.P. et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306, 269–271 (2004).

    CAS  PubMed  Google Scholar 

  7. Armstrong, F. et al. NOTCH is a key regulator of human T-cell acute leukemia initiating cell activity. Blood 113, 1730–1740 (2009).

    CAS  PubMed  Google Scholar 

  8. Tatarek, J. et al. Notch1 inhibition targets the leukemia-initiating cells in a Tal1/Lmo2 mouse model of T-ALL. Blood 118, 1579–1590 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Pui, C.H. & Evans, W.E. Treatment of acute lymphoblastic leukemia. N. Engl. J. Med. 354, 166–178 (2006).

    CAS  PubMed  Google Scholar 

  10. Cox, C.V. et al. Characterization of a progenitor cell population in childhood T-cell acute lymphoblastic leukemia. Blood 109, 674–682 (2007).

    CAS  PubMed  Google Scholar 

  11. Gerby, B. et al. Expression of CD34 and CD7 on human T-cell acute lymphoblastic leukemia discriminates functionally heterogeneous cell populations. Leukemia 25, 1249–1258 (2011).

    CAS  PubMed  Google Scholar 

  12. Chiu, P.P., Jiang, H. & Dick, J.E. Leukemia-initiating cells in human T-lymphoblastic leukemia exhibit glucocorticoid resistance. Blood 116, 5268–5279 (2010).

    CAS  PubMed  Google Scholar 

  13. Reya, T., Morrison, S.J., Clarke, M.F. & Weissman, I.L. Stem cells, cancer, and cancer stem cells. Nature 414, 105–111 (2001).

    CAS  PubMed  Google Scholar 

  14. Kobayashi, C.I. & Suda, T. Regulation of reactive oxygen species in stem cells and cancer stem cells. J. Cell. Physiol. 227, 421–430 (2012).

    CAS  PubMed  Google Scholar 

  15. Valko, M. et al. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 39, 44–84 (2007).

    CAS  PubMed  Google Scholar 

  16. Adly, A.A.M. Oxidative stress and disease: an updated review. Res. J. Immunol. 3, 129–145 (2010).

    CAS  Google Scholar 

  17. Guzman, M.L. et al. The sesquiterpene lactone parthenolide induces apoptosis of human acute myelogenous leukemia stem and progenitor cells. Blood 105, 4163–4169 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Diehn, M. et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458, 780–783 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Chiang, M.Y. et al. Leukemia-associated NOTCH1 alleles are weak tumor initiators but accelerate K-ras–initiated leukemia. J. Clin. Invest. 118, 3181–3194 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Medyouf, H. et al. Acute T-cell leukemias remain dependent on Notch signaling despite PTEN and INK4A/ARF loss. Blood 115, 1175–1184 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Pear, W.S. et al. Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles. J. Exp. Med. 183, 2283–2291 (1996).

    CAS  PubMed  Google Scholar 

  22. Eruslanov, E. & Kusmartsev, S. Identification of ROS using oxidized DCFDA and flow-cytometry. Methods Mol. Biol. 594, 57–72 (2010).

    CAS  PubMed  Google Scholar 

  23. Felli, M.P. et al. PKCθ mediates pre-TCR signaling and contributes to Notch3-induced T-cell leukemia. Oncogene 24, 992–1000 (2005).

    CAS  PubMed  Google Scholar 

  24. Sun, Z. et al. PKC-θ is required for TCR-induced NF-κB activation in mature but not immature T lymphocytes. Nature 404, 402–407 (2000).

    CAS  PubMed  Google Scholar 

  25. Kaminski, M., Kiessling, M., Suss, D., Krammer, P.H. & Gulow, K. Novel role for mitochondria: protein kinase Cθ-dependent oxidative signaling organelles in activation-induced T-cell death. Mol. Cell. Biol. 27, 3625–3639 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Baier-Bitterlich, G. et al. Protein kinase C-θ isoenzyme selective stimulation of the transcription factor complex AP-1 in T lymphocytes. Mol. Cell. Biol. 16, 1842–1850 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Della Gatta, G. et al. Reverse engineering of TLX oncogenic transcriptional networks identifies RUNX1 as tumor suppressor in T-ALL. Nat. Med. 18, 436–440 (2012).

    CAS  PubMed  Google Scholar 

  28. Grossmann, V. et al. Prognostic relevance of RUNX1 mutations in T-cell acute lymphoblastic leukemia. Haematologica 96, 1874–1877 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang, J. et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature 481, 157–163 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Coustan-Smith, E. et al. Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. Lancet Oncol. 10, 147–156 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Gutierrez, A. et al. The BCL11B tumor suppressor is mutated across the major molecular subtypes of T-cell acute lymphoblastic leukemia. Blood 118, 4169–4173 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Homminga, I. et al. Integrated transcript and genome analyses reveal NKX2-1 and MEF2C as potential oncogenes in T cell acute lymphoblastic leukemia. Cancer Cell 19, 484–497 (2011).

    CAS  PubMed  Google Scholar 

  33. Winter, S.S. et al. Identification of genomic classifiers that distinguish induction failure in T-lineage acute lymphoblastic leukemia: a report from the Children′s Oncology Group. Blood 110, 1429–1438 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Heintzman, N.D. et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat. Genet. 39, 311–318 (2007).

    CAS  PubMed  Google Scholar 

  35. Spender, L.C., Whiteman, H.J., Karstegl, C.E. & Farrell, P.J. Transcriptional cross-regulation of RUNX1 by RUNX3 in human B cells. Oncogene 24, 1873–1881 (2005).

    CAS  PubMed  Google Scholar 

  36. Wang, H. et al. Genome-wide analysis reveals conserved and divergent features of Notch1/RBPJ binding in human and murine T-lymphoblastic leukemia cells. PNAS 108, 14908–14913 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Weng, A.P. et al. Growth suppression of pre-T acute lymphoblastic leukemia cells by inhibition of notch signaling. Mol. Cell. Biol. 23, 655–664 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Guo, W. et al. Multi-genetic events collaboratively contribute to Pten-null leukaemia stem-cell formation. Nature 453, 529–533 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Tremblay, M. et al. Modeling T-cell acute lymphoblastic leukemia induced by the SCL and LMO1 oncogenes. Genes Dev 24, 1093–1105 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Isakov, N. & Altman, A. Protein kinase Cθ in T cell activation. Annu. Rev. Immunol. 20, 761–794 (2002).

    CAS  PubMed  Google Scholar 

  41. Morita, S., Kojima, T. & Kitamura, T. Plat-E: an efficient and stable system for transient packaging of retroviruses. Gene Ther. 7, 1063–1066 (2000).

    CAS  PubMed  Google Scholar 

  42. Zufferey, R., Nagy, D., Mandel, R.J., Naldini, L. & Trono, D. Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat. Biotechnol. 15, 871–875 (1997).

    CAS  PubMed  Google Scholar 

  43. Dull, T. et al. A third-generation lentivirus vector with a conditional packaging system. J. Virol. 72, 8463–8471 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Zufferey, R. et al. Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J. Virol. 72, 9873–9880 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Zennou, V. et al. HIV-1 genome nuclear import is mediated by a central DNA flap. Cell 101, 173–185 (2000).

    CAS  PubMed  Google Scholar 

  46. Sirven, A. et al. The human immunodeficiency virus type-1 central DNA flap is a crucial determinant for lentiviral vector nuclear import and gene transduction of human hematopoietic stem cells. Blood 96, 4103–4110 (2000).

    CAS  PubMed  Google Scholar 

  47. Logan, A.C. et al. Factors influencing the titer and infectivity of lentiviral vectors. Hum. Gene Ther. 15, 976–988 (2004).

    CAS  PubMed  Google Scholar 

  48. Robbins, P.B. et al. Consistent, persistent expression from modified retroviral vectors in murine hematopoietic stem cells. Proc. Natl. Acad. Sci. USA 95, 10182–10187 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Root, D.E., Hacohen, N., Hahn, W.C., Lander, E.S. & Sabatini, D.M. Genome-scale loss-of-function screening with a lentiviral RNAi library. Nat. Methods 3, 715–719 (2006).

    CAS  PubMed  Google Scholar 

  50. Ou, W.B., Zhu, M.J., Demetri, G.D., Fletcher, C.D.M. & Fletcher, J.A. Protein kinase C-θ regulates KIT expression and proliferation in gastrointestinal stromal tumors. Oncogene 27, 5624–5634 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Sarbassov, D.D., Guertin, D.A., Ali, S.M. & Sabatini, D.M. Phosphorylation and Regulation of Akt/PKB by the Rictor-mTOR complex. Science 307, 1098–1101 (2005).

    CAS  PubMed  Google Scholar 

  52. Palomero, T. et al. Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nat. Med. 13, 1203–1210 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Palomero, T. et al. CUTLL1, a novel human T-cell lymphoma cell line with t(7;9) rearrangement, aberrant NOTCH1 activation and high sensitivity to γ-secretase inhibitors. Leukemia 20, 1279–1287 (2006).

    CAS  PubMed  Google Scholar 

  54. Dallas, M.H., Varnum-Finney, B., Martin, P.J. & Bernstein, I.D. Enhanced T-cell reconstitution by hematopoietic progenitors expanded ex vivo using the Notch ligand Δ1. Blood 109, 3579–3587 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Schneider, C.A., Rasband, W.S. & Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Hasserjian, R.P., Aster, J.C., Davi, F., Weinberg, D.S. & Sklar, J. Modulated expression of notch1 during thymocyte development. Blood 88, 970–976 (1996).

    CAS  PubMed  Google Scholar 

  57. Ji, H. et al. An integrated software system for analyzing ChIP-chip and ChIP-seq data. Nat. Biotechnol. 26, 1293–1300 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Li, C. & Wong, W.H. Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. PNAS 98, 31–36 (2001).

    CAS  PubMed  Google Scholar 

  59. Hu, Y. & Smyth, G.K. ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. J. Immunol. Methods 347, 70–78 (2009).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Z. Sun (City of Hope, Duarte, California) for providing PKC-θ knockout mice, J. Fletcher and W. Ou (Brigham and Women's Hospital, Boston, Massachusetts) for PKC-θ shRNA lentivectors, E. Kieff (Brigham and Women's Hospital, Boston, Massachusetts) for CSL antibody, I. Bernstein (Fred Hutchinson Cancer Research Center, Seattle, Washington) for Ig-DL1 ligand, F. Pflumio (Commissariat à l'Énergie Atomique Fontenay-aux-Roses, France) for the MS5-DL1 cell line and E. Martignani for help with immunofluorescence. We would also like to thank P. Ballerini (Hôpital Armand Trousseau, Paris, France), T. Leblanc (Hôpital Saint-Louis, Paris, France), L. Matherly (Karmanos Cancer Institute, Detroit, Michigan) and M.J. You (MD Anderson Cancer Center, Houston, Texas) for providing patient T-ALL samples. This work was supported by grants from the Canadian Institutes of Health Research/Terry Fox Foundation, the Leukemia and Lymphoma Society of Canada, the Cancer Research Society, the Lymphoma Foundation Canada (to A.P.W.) and the US National Cancer Institute (P01CA119070 to J.C.A.). M.Y.C. was supported by a career development award from the US National Cancer Institute (K08CA120544). A.P.W. was a Michael Smith Foundation for Health Research Scholar.

Author information

Authors and Affiliations

Authors

Contributions

V.G. and A.P.W. designed the experiments. V.G., C.R.J., S.H.L., O.O.S., O.N., C.W. and S.G. generated the data. V.G. and A.P.W. interpreted the results. M.Y.C. provided reagents and advice. H.W. and J.C.A. generated and analyzed ChIP-Seq data. R.K.H. and C.E. provided advice and discussion. V.G. and A.P.W. wrote the paper.

Corresponding author

Correspondence to Andrew P Weng.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–15 and Supplementary Table 1 (PDF 1576 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giambra, V., Jenkins, C., Wang, H. et al. NOTCH1 promotes T cell leukemia-initiating activity by RUNX-mediated regulation of PKC-θ and reactive oxygen species. Nat Med 18, 1693–1698 (2012). https://doi.org/10.1038/nm.2960

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2960

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer