Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Interactions among HCLS1, HAX1 and LEF-1 proteins are essential for G-CSF–triggered granulopoiesis

Abstract

We found that hematopoietic cell–specific Lyn substrate 1 (HCLS1 or HS1) is highly expressed in human myeloid cells and that stimulation with granulocyte colony-stimulating factor (G-CSF) leads to HCLS1 phosphorylation. HCLS1 binds the transcription factor lymphoid-enhancer binding factor 1 (LEF-1), transporting LEF-1 into the nucleus upon G-CSF stimulation and inducing LEF-1 autoregulation. In patients with severe congenital neutropenia, inherited mutations in the gene encoding HCLS1-associated protein X-1 (HAX1) lead to profound defects in G-CSF–triggered phosphorylation of HCLS1 and subsequently to reduced autoregulation and expression of LEF-1. Consistent with these results, HCLS1-deficient mice are neutropenic. In bone marrow biopsies of the majority of tested patients with acute myeloid leukemia, HCLS1 protein expression is substantially elevated, associated with high levels of G-CSF synthesis and, in some individuals, a four-residue insertion in a proline-rich region of HCLS1 protein known to accelerate intracellular signaling. These data demonstrate the importance of HCLS1 in myelopoiesis in vitro and in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: HCLS1 interacts with LEF-1.
Figure 2: HCLS1 is essential for G-CSF-triggered granulopoiesis in vivo and in vitro.
Figure 3: HCLS1 and HAX1 are involved in nuclear transport, activation and autoregulation of LEF-1.
Figure 4: HCLS1 and HAX1 are required for G-CSFR-triggered phosphorylation of PI3K p85 and Akt and for F-actin rearrangement.
Figure 5: Defective granulopoiesis in Hcls1−/− mice.
Figure 6: HCLS1 is hyperactivated in AML.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Kitamura, D., Kaneko, H., Miyagoe, Y., Ariyasu, T. & Watanabe, T. Isolation and characterization of a novel human gene expressed specifically in the cells of hematopoietic lineage. Nucleic Acids Res. 17, 9367–9379 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. van Rossum, A.G., Schuuring-Scholtes, E., van Buuren-van Seggelen, V., Kluin, P.M. & Schuuring, E. Comparative genome analysis of cortactin and HS1: the significance of the F-actin binding repeat domain. BMC Genomics 6, 15 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Huang, Y. & Burkhardt, J.K. T-cell-receptor–dependent actin regulatory mechanisms. J. Cell Sci. Review 120, 723–730 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Hao, J.J., Carey, G.B. & Zhan, X. Syk-mediated tyrosine phosphorylation is required for the association of hematopoietic lineage cell-specific protein 1 with lipid rafts and B cell antigen receptor signalosome complex. J. Biol. Chem. 279, 33413–33420 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Takemoto, Y. et al. Growth factor receptor-bound protein 2 (Grb2) association with hemopoietic specific protein 1: linkage between Lck and Grb2. J. Immunol. 161, 625–630 (1998).

    CAS  PubMed  Google Scholar 

  6. Ingley, E. et al. HS1 interacts with Lyn and is critical for erythropoietin-induced differentiation of erythroid cells. J. Biol. Chem. 275, 7887–7893 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Yamanashi, Y. et al. Identification of HS1 protein as a major substrate of protein-tyrosine kinase(s) upon B-cell antigen receptor–mediated signaling. Proc. Natl. Acad. Sci. USA 90, 3631–3635 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brunati, A.M. et al. Thrombin-induced tyrosine phosphorylation of HS1 in human platelets is sequentially catalyzed by Syk and Lyn tyrosine kinases and associated with the cellular migration of the protein. J. Biol. Chem. 280, 21029–21035 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Kahner, B.N. et al. Hematopoietic lineage cellspecific protein 1 (HS1) is a functionally important signaling molecule in platelet activation. Blood. 110, 2449–2456 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yamanashi, Y. et al. Role of tyrosine phosphorylation of HS1 in B cell antigen receptor-mediated apoptosis. J. Exp. Med. 185, 1387–1392 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Uruno, T., Zhang, P., Liu, J., Hao, J.J. & Zhan, X. Haematopoietic lineage cell–specific protein 1 (HS1) promotes actin-related protein (Arp) 2/3 complex-mediated actin polymerization. Biochem. J. 371, 485–493 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Huang, Y. et al. The c-Abl tyrosine kinase regulates actin remodeling at the immune synapse. Blood 112, 111–119 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Scielzo, C. et al. HS1 protein is differentially expressed in chronic lymphocytic leukemia patient subsets with good or poor prognoses. J. Clin. Invest. 115, 1644–1650 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Taniuchi, I. et al. Antigen-receptor induced clonal expansion and deletion of lymphocytes are impaired in mice lacking HS1 protein, a substrate of the antigen-receptor-coupled tyrosine kinases. EMBO J. 14, 3664–3678 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Corey, S.J. et al. Requirement of Src kinase Lyn for induction of DNA synthesis by granulocyte colony-stimulating factor. J. Biol. Chem. 273, 3230–3235 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Corey, S.J. & Anderson, S.M. Src-related protein tyrosine kinases in hematopoiesis. Blood Review 93, 1–14 (1999).

    CAS  PubMed  Google Scholar 

  17. Ward, A.C., Monkhouse, J.L., Hamilton, J.A. & Csar, X.F. Direct binding of Shc, Grb2, SHP-2 and p40 to the murine granulocyte colony-stimulating factor receptor. Biochim. Biophys. Acta 1448, 70–76 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Ward, A.C. et al. Tyrosine-dependent and -independent mechanisms of STAT3 activation by the human granulocyte colony-stimulating factor (G-CSF) receptor are differentially utilized depending on G-CSF concentration. Blood 93, 113–124 (1999).

    CAS  PubMed  Google Scholar 

  19. Zhu, Q.S., Robinson, L.J., Roginskaya, V. & Corey, S.J. G-CSF-induced tyrosine phosphorylation of Gab2 is Lyn kinase dependent and associated with enhanced Akt and differentiative, not proliferative, responses. Blood 103, 3305–3312 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Zhu, Q.S. et al. G-CSF induced reactive oxygen species involves Lyn-PI3-kinase-Akt and contributes to myeloid cell growth. Blood 107, 1847–1856 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kendrick, T.S. & Bogoyevitch, M.A. Activation of mitogen-activated protein kinase pathways by the granulocyte colony-stimulating factor receptor: mechanisms and functional consequences. Front. Biosci. Review 12, 591–607 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Skokowa, J. et al. NAMPT is essential for the G-CSF–induced myeloid differentiation via a NAD+–sirtuin-1–dependent pathway. Nat. Med. 15, 151–158 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Akbarzadeh, S. et al. Tyrosine residues of the granulocyte colony-stimulating factor receptor transmit proliferation and differentiation signals in murine bone marrow cells. Blood 99, 879–887 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Corey, S.J. et al. Granulocyte colony–stimulating factor receptor signaling involves the formation of a three-component complex with Lyn and Syk protein-tyrosine kinases. Proc. Natl. Acad. Sci. USA 91, 4683–4687 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ward, A.C. et al. The SH2 domain–containing protein tyrosine phosphatase SHP-1 is induced by granulocyte colony-stimulating factor (G-CSF) and modulates signaling from the G-CSF receptor. Leukemia 14, 1284–1291 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Basu, S., Dunn, A. & Ward, A. G-CSF function and modes of action. Int. J. Mol. Med. 10, 3–10 (2002).

    CAS  PubMed  Google Scholar 

  27. Welte, K., Zeidler, C. & Dale, D.C. Severe congenital neutropenia. Semin. Hematol. 43, 189–195 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Zeidler, C., Germeshausen, M., Klein, C. & Welte, K. Clinical implications of ELA2-, HAX1-, and G-CSF-receptor (CSF3R) mutations in severe congenital neutropenia. Br. J. Haematol. 144, 459–467 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Klein, C. et al. HAX1 deficiency causes autosomal recessive severe congenital neutropenia (Kostmann disease). Nat. Genet. 39, 86–92 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Suzuki, Y. et al. HAX-1, a novel intracellular protein, localized on mitochondria, directly associates with HS1, a substrate of Src family tyrosine kinases. J. Immunol. 158, 2736–2744 (1997).

    CAS  PubMed  Google Scholar 

  31. Chao, J.R. et al. Hax1-mediated processing of HtrA2 by Parl allows survival of lymphocytes and neurons. Nature 452, 98–102 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Vafiadaki, E. et al. The anti-apoptotic protein HAX-1 interacts with SERCA2 and regulates its protein levels to promote cell survival. Mol. Biol. Cell 20, 306–318 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Al-Maghrebi, M. et al. The 3′ untranslated region of human vimentin mRNA interacts with protein complexes containing eEF-1γ and HAX-1. Nucleic Acids Res. 30, 5017–5028 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Skokowa, J. et al. LEF-1 is crucial for neutrophil granulocytopoiesis and its expression is severely reduced in congenital neutropenia. Nat. Med. 12, 1191–1197 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Elsner, J., Roesler, J., Emmendörffer, A., Lohmann-Matthes, M.L. & Welte, K. Abnormal regulation in the signal transduction in neutrophils from patients with severe congenital neutropenia: relation of impaired mobilization of cytosolic free calcium to altered chemotaxis, superoxide anion generation and F-actin content. Exp. Hematol. 21, 38–46 (1993).

    CAS  PubMed  Google Scholar 

  36. Eastman, Q. & Grosschedl, R. Regulation of LEF-1/TCF transcription factors by Wnt and other signals. Curr. Opin. Cell Biol. Review 11, 233–240 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Timm, A. & Grosschedl, R. Wnt signaling in lymphopoiesis. Curr. Top. Microbiol. Immunol. Review 290, 225–252 (2005).

    CAS  PubMed  Google Scholar 

  38. Bruhn, L., Munnerlyn, A. & Grosschedl, R. ALY, a context-dependent coactivator of LEF-1 and AML-1, is required for TCRα enhancer function. Genes Dev. 11, 640–653 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Vadlamudi, U. et al. PITX2, β-catenin and LEF-1 interact to synergistically regulate the LEF-1 promoter. J. Cell Sci. 118, 1129–1137 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Levanon, D. et al. Transcriptional repression by AML1 and LEF-1 is mediated by the TLE/Groucho corepressors. Proc. Natl. Acad. Sci. USA 95, 11590–11595 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Petropoulos, K. et al. A novel role for Lef-1, a central transcription mediator of Wnt signaling, in leukemogenesis. J. Exp. Med. 205, 515–522 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yaffe, M.B. et al. A motif-based profile scanning approach for genome-wide prediction of signaling pathways. Nat. Biotechnol. 19, 348–353 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Songyang, Z. et al. Use of an oriented peptide library to determine the optimal substrates of protein kinases. Curr. Biol. 4, 973–982 (1994).

    Article  CAS  PubMed  Google Scholar 

  44. Söderberg, O. et al. Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat. Methods 3, 995–1000 (2006).

    Article  PubMed  Google Scholar 

  45. Nilsson, I. et al. VEGF receptor 2/-3 heterodimers detected in situ by proximity ligation on angiogenic sprouts. EMBO J. 29, 1377–1388 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Greenberg, J.I. et al. A role for VEGF as a negative regulator of pericyte function and vessel maturation. Nature 456, 809–813 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Elsner, J., Roesler, J., Emmendörffer, A., Lohmann-Matthes, M.L. & Welte, K. Abnormal regulation in the signal transduction in neutrophils from patients with severe congenital neutropenia: relation of impaired mobilization of cytosolic free calcium to altered chemotaxis, superoxide anion generation and F-actin content. Exp. Hematol. 21, 38–46 (1993).

    CAS  PubMed  Google Scholar 

  48. Otsuka, J. et al. Association of a four-amino acid residue insertion polymorphism of the HS1 gene with systemic lupus erythematosus: molecular and functional analysis. Arthritis Rheum. 50, 871–881 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Prieve, M.G., Guttridge, K.L., Munguia, J. & Waterman, M.L. Differential importin-α recognition and nuclear transport by nuclear localization signals within the high-mobility-group DNA binding domains of lymphoid enhancer factor 1 and T-cell factor 1. Mol. Cell. Biol. 18, 4819–4832 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Prieve, M.G., Guttridge, K.L., Munguia, J.E. & Waterman, M.L. The nuclear localization signal of lymphoid enhancer factor-1 is recognized by two differentially expressed Srp1-nuclear localization sequence receptor. J. Biol. Chem. 271, 7654–7658 (1996).

    Article  CAS  PubMed  Google Scholar 

  51. Asally, M. & Yoneda, Y. β-catenin can act as a nuclear import receptor for its partner transcription factor, lymphocyte enhancer factor-1 (lef-1). Exp. Cell Res. 308, 357–363 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Coyle-Rink, J., Del Valle, L., Sweet, T., Khalili, K. & Amini, S. Developmental expression of Wnt signaling factors in mouse brain. Cancer Biol. Ther. 1, 640–645 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Arsenian, S., Weinhold, B., Oelgeschläger, M., Rüther, U. & Nordheim, A. Serum response factor is essential for mesoderm formation during mouse embryogenesis. EMBO J. 17, 6289–6299 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Luderer, H.F., Gori, F. & Demay, M.B. Lymphoid enhancer-binding factor-1 (LEF1) interacts with the DNA-binding domain of the vitamin D receptor. J. Biol. Chem. 286, 18444–18451 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Colaluca, I.N. et al. NUMB controls p53 tumour suppressor activity. Nature 451, 76–80 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Fonseca, A.V., Freund, D., Bornhäuser, M. & Corbeil, D. Polarization and migration of hematopoietic stem and progenitor cells rely on the RhoA/ROCK I pathway and an active reorganization of the microtubule network. J. Biol. Chem. 285, 31661–31671 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hagiwara, S. et al. Tyrosine phosphorylation of proteins in primary human myeloid leukemia cells stimulated by cytokines: analysis of the frequency of phosphorylation, and partial identification and semi-quantification of signaling molecules. Int. J. Hematol. 68, 387–401 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Young, D.C., Wagner, K. & Griffin, J.D. Constitutive expression of the granulocyte-macrophage colony–stimulating factor gene in acute myeloblastic leukemia. J. Clin. Invest. 79, 100–106 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Young, D.C., Demetri, G.D., Ernst, T.J., Cannistra, S.A. & Griffin, J.D. In vitro expression of colony-stimulating factor genes by human acute myeloblastic leukemia cells. Exp. Hematol. 16, 378–382 (1988).

    CAS  PubMed  Google Scholar 

  60. Ernst, T.J., Ritchie, A.R., O'Rourke, R. & Griffin, J.D. Colony-stimulating factor gene expression in human acute myeloblastic leukemia cells is posttranscriptionally regulated. Leukemia 3, 620–625 (1989).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Gigina, K. Cherkaoui, A. Müller Brechlin, M. Reuter and A.-L. Hagemann for technical assistance. We thank J. Klupp for assistance in generation of LEF-1 Ala16 mutant; D.D. Billadeau (Department of Immunology, Schulze Center for Novel Therapeutics, College of Medicine, Mayo Clinic) for providing us with the rabbit polyclonal HCLS1-specific antibody; L. Naldini (San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Gene Therapy and Stem Cells, San Raffaele Institute) for pRRL.PPT.PGK.GFPpre vector; A. Schambach (Department of Experimental Hematology, Hannover Medical School) for VSVg envelope plasmid; Thomas J. Hope (University of Illinois at Chicago) for pRSV-Rev plasmid; and O. Tetsu (Department of Otolaryngology—Head and Neck Surgery, University of California–San Francisco) for the CCND1 reporter construct. We also thank the physicians within the Severe Chronic Neutropenia International Registry for providing patient material. We thank study subjects for their cooperation. This work was partially supported by German José Carreras Leukemia Foundation (J.S., M.K.), by REBIRTH Cluster of Excellence of the Hannover Medical School (J.S.), by Madeleine Schickedanz-KinderKrebs-Stiftung (J.S.), and by the Deutsche Forschungsgemeinschaft (Z.L.; DFG grant Li 1608/2-1).

Author information

Authors and Affiliations

Authors

Contributions

K.W. and J.S. made initial observations, designed the experiments, analyzed the data, supervised experimentation and wrote the manuscript; J.S., D.L., M.K., O.K., A.G. and I.K. performed the main experiments; K.G. introduced mutations into LEF-1 and C/EBPα reporter gene constructs and performed reporter gene assays in HEK293T cells; J.B. and E.C. performed blood cell counting in Hcls1−/− mice and provided bone marrow and blood material of these mice; K.H. and H.-H.K. performed tissue microarray analysis; Z.L. and A.G. provided some of the AML samples; C.S. and R.G. introduced mutations in LEF-1 cDNA corresponding to HCLS1-binding site; C.Z. provided patient material.

Corresponding authors

Correspondence to Julia Skokowa or Karl Welte.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–18, Supplementary Tables 2–5 and Supplementary Methods (PDF 2905 kb)

Supplementary Table 1

Microarray data of CD34+ cells transduced with HCLS1 shRNA vs ctrl shRNA (XLS 6153 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skokowa, J., Klimiankou, M., Klimenkova, O. et al. Interactions among HCLS1, HAX1 and LEF-1 proteins are essential for G-CSF–triggered granulopoiesis. Nat Med 18, 1550–1559 (2012). https://doi.org/10.1038/nm.2958

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2958

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing