Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

Annotating MYC status with 89Zr-transferrin imaging

Abstract

A noninvasive technology that quantitatively measures the activity of oncogenic signaling pathways could have a broad impact on cancer diagnosis and treatment with targeted therapies. Here we describe the development of 89Zr-desferrioxamine–labeled transferrin (89Zr-transferrin), a new positron emission tomography (PET) radiotracer that binds the transferrin receptor 1 (TFRC, CD71) with high avidity. The use of 89Zr-transferrin produces high-contrast PET images that quantitatively reflect treatment-induced changes in MYC-regulated TFRC expression in a MYC-driven prostate cancer xenograft model. Moreover, 89Zr-transferrin imaging can detect the in situ development of prostate cancer in a transgenic MYC prostate cancer model, as well as in prostatic intraepithelial neoplasia (PIN) before histological or anatomic evidence of invasive cancer. These preclinical data establish 89Zr-transferrin as a sensitive tool for noninvasive measurement of oncogene-driven TFRC expression in prostate and potentially other cancers, with prospective near-term clinical application.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PET imaging of inflammation with 89Zr-transferrin.
Figure 2: In vitro and in vivo studies on mouse 89Zr-transferrin in MycCaP prostate cancer models.
Figure 3: Co-registered PET/CT imaging and ex vivo prostate tissue studies of mouse 89Zr-transferrin in Hi-Myc (12- and 4-month-old) and WT (4-month-old) mice.

Similar content being viewed by others

References

  1. Gatter, K.C., Brown, G., Trowbridge, I.S., Woolston, R.E. & Mason, D.Y. Transferrin receptors in human tissues: their distribution and possible clinical relevance. J. Clin. Pathol. 36, 539–545 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Neckers, L.M. & Trepel, J.B. Transferrin receptor expression and the control of cell growth. Cancer Invest. 4, 461–470 (1986).

    Article  CAS  PubMed  Google Scholar 

  3. Richardson, D.R. Therapeutic potential of iron chelators in cancer therapy. Adv. Exp. Med. Biol. 509, 231–249 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Taetle, R., Honeysett, J.M. & Trowbridge, I. Effects of anti-transferrin receptor antibodies on growth of normal and malignant myeloid cells. Int. J. Cancer 32, 343–349 (1983).

    Article  CAS  PubMed  Google Scholar 

  5. Weiner, R.E. The mechanism of 67Ga localization in malignant disease. Nucl. Med. Biol. 23, 745–751 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Högemann-Savellano, D. et al. The transferrin receptor: a potential molecular imaging marker for human cancer. Neoplasia 5, 495–506 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  7. O'Donnell, K.A. et al. Activation of transferrin receptor 1 by c-Myc enhances cellular proliferation and tumorigenesis. Mol. Cell. Biol. 26, 2373–2386 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ellwood-Yen, K. et al. Myc-driven murine prostate cancer shares molecular features with human prostate tumors. Cancer Cell 4, 223–238 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Tacchini, L., Bianchi, L., Bernelli-Zazzera, A. & Cairo, G. Transferrin receptor induction by hypoxia. J. Biol. Chem. 274, 24142–24146 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Galvez, T. et al. siRNA screen of the human signaling proteome identifies the PtdIns(3,4,5)P3-mTOR signaling pathway as a primary regulator of transferrin uptake. Genome Biol. 8, R142 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Larson, S.M. Mechanisms of localization of gallium-67 in tumors. Semin. Nucl. Med. 8, 193–203 (1978).

    Article  CAS  PubMed  Google Scholar 

  12. Som, P. et al. 97Ru-transferrin uptake in tumor and abscess. Eur. J. Nucl. Med. 8, 491–494 (1983).

    Article  CAS  PubMed  Google Scholar 

  13. Vavere, A.L. & Welch, M.J. Preparation, biodistribution, and small animal PET of 45Ti-transferrin. J. Nucl. Med. 46, 683–690 (2005).

    CAS  PubMed  Google Scholar 

  14. Lee, S.-I. et al. Molecular scintigraphic imaging using 99mTc–transferrin is useful for early detection of synovial inflammation of collagen-induced arthritis mouse. Rheumatol. Int. 29, 153–157 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Prost, A.C. et al. Tissue distribution of 131I radiolabeled transferrin in the athymic nude mouse: localization of a human colon adenocarcinoma HT-29 xenograft. Int. J. Rad. Appl. Instrum. B 17, 209–216 (1990).

    Article  CAS  PubMed  Google Scholar 

  16. Aloj, L. et al. Targeting of transferrin receptors in nude mice bearing A431 and LS174T xenografts with [18F]holo-transferrin: permeability and receptor dependence. J. Nucl. Med. 40, 1547–1555 (1999).

    CAS  PubMed  Google Scholar 

  17. Holland, J.P., Sheh, Y. & Lewis, J.S. Standardized methods for the production of high specific-activity zirconium-89. Nucl. Med. Biol. 36, 729–739 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Holland, J.P., Williamson, M.J. & Lewis, J.S. Unconventional nuclides for radiopharmaceuticals. Mol. Imaging 9, 1–20 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Holland, J.P. et al. 89Zr-DFO-J591 for immunoPET of prostate-specific membrane antigen expression in vivo. J. Nucl. Med. 51, 1293–1300 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Holland, J.P. & Lewis Jason, S. Zirconium-89 chemistry in the design of novel radiotracers for immuno-PET. in Technetium and Other Radiometals in Chemistry and Medicine (eds. Mazzi, U., Eckelman, W.C. & Volkert, W.A.) 187–192 (Servizi Grafici Editoriali snc, Padova, Italy, 2010).

  21. Meijs, W.E., Herscheid, J.D.M., Haisma, H.J. & Pinedo, H.M. Evaluation of desferal as a bifunctional chelating agent for labeling antibodies with Zr-89. Int. J. Rad. Appl. Instrum. A 43, 1443–1447 (1992).

    Article  CAS  PubMed  Google Scholar 

  22. Verel, I. et al. 89Zr immuno-PET: comprehensive procedures for the production of 89Zr-labeled monoclonal antibodies. J. Nucl. Med. 44, 1271–1281 (2003).

    CAS  PubMed  Google Scholar 

  23. Daniels, T.R., Delgado, T., Rodriguez, J.A., Helguera, G. & Penichet, M.L. The transferrin receptor part I: Biology and targeting with cytotoxic antibodies for the treatment of cancer. Clin. Immunol. 121, 144–158 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Haynes, B.F. et al. Characterization of a monoclonal antibody (4F2) that binds to human monocytes and to a subset of activated lymphocytes. J. Immunol. 126, 1409–1414 (1981).

    CAS  PubMed  Google Scholar 

  25. Gotthardt, M., Bleeker-Rovers, C.P., Boerman, O.C. & Oyen, W.J.G. Imaging of inflammation by PET, conventional scintigraphy, and other imaging techniques. J. Nucl. Med. 51, 1937–1949 (2010).

    PubMed  Google Scholar 

  26. Ohkubo, Y., Kohno, H., Suzuki, T. & Kubodera, A. Relation between 67Ga uptake and the stage of inflammation induced by turpentine oil in rats. Radioisotopes 34, 7–10 (1985).

    Article  CAS  PubMed  Google Scholar 

  27. Heneweer, C., Holland, J.P., Divilov, V., Carlin, S. & Lewis, J.S. Magnitude of enhanced permeability and retention effect in tumors with different phenotypes: 89Zr-albumin as a model system. J. Nucl. Med. 52, 623–633 (2011).

    Article  Google Scholar 

  28. Watson, P.A. et al. Context-dependent hormone-refractory progression revealed through characterization of a novel murine prostate cancer cell line. Cancer Res. 65, 11565–11571 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Aloj, L., Carson, R.E., Lang, L., Herscovitch, P. & Eckelman, W.C. Measurement of transferrin receptor kinetics in the baboon liver using dynamic positron emission tomography imaging and [18F]holo-transferrin. Hepatology 25, 986–990 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Aloj, L., Lang, L., Jagoda, E., Neumann, R.D. & Eckelman, W.C. Evaluation of human transferrin radiolabeled with N-succinimidyl 4-[fluorine-18](fluoromethyl) benzoate. J. Nucl. Med. 37, 1408–1412 (1996).

    CAS  PubMed  Google Scholar 

  31. Balkwill, F. & Mantovani, A. Inflammation and cancer: back to Virchow? Lancet 357, 539–545 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Pellegrino, D. et al. Inflammation and infection: imaging properties of 18F-FDG–labeled white blood cells versus 18F-FDG. J. Nucl. Med. 46, 1522–1530 (2005).

    CAS  PubMed  Google Scholar 

  33. Filippakopoulos, P. et al. Selective inhibition of BET bromodomains. Nature 468, 1067–1073 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Delmore, J.E. et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 146, 904–917 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zuber, J. et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature 478, 524–528 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Abe, N., Inoue, T., Galvez, T., Klein, L. & Meyer, T. Dissecting the role of PtdIns(4,5)P2 in endocytosis and recycling of the transferrin receptor. J. Cell Sci. 121, 1488–1494 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Kim, S. et al. Regulation of transferrin recycling kinetics by PtdIns[4,5]P2 availability. FASEB J. 20, 2399–2401 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Gayed, I. et al. The role of 18F-FDG PET in staging and early prediction of response to therapy of recurrent gastrointestinal stromal tumors. J. Nucl. Med. 45, 17–21 (2004).

    CAS  PubMed  Google Scholar 

  39. Holland, J.P. et al. Measuring the pharmacokinetic effects of a novel Hsp90 inhibitor on HER2/neu expression in mice using 89Zr-DFO-trastuzumab. PLoS ONE 5, e8859 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Beattie, B.J. et al. Multimodality registration without a dedicated multimodality scanner. Mol. Imaging 6, 108–120 (2007).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank N. Pillarsetty, B. Carver, D. Ulmert and P. Zanzonico for informative discussions, V. Longo for assistance with the in vivo studies, and M. Balbas for help with in vitro experiments. We thank C. Le and D. Winkleman for recording the MRI data and B. Beattie for assistance with co-registering PET/CT data. We thank M. McDevitt for assistance with HPLC stability studies. We also thank the staff of the Radiochemistry and Cyclotron Core at MSKCC. Funded in part by the Geoffrey Beene Cancer Research Center of MSKCC (J.S.L.), the Office of Science (BER)–US Department of Energy (Award DE-SC0002456, J.S.L.) and the R25T Molecular Imaging for Training in Oncology Program (2R25-CA096945; principal investigator H. Hricak; fellows: M.J.E. and S.L.R.) from the US National Cancer Institute. Technical services provided by the MSKCC Small-Animal Imaging Core Facility were supported in part by the US National Institutes of Health (NIH) grant R24-CA83084; NIH Center grant P30-CA08748; and NIH Prostate SPORE, P50-CA92629.

Author information

Authors and Affiliations

Authors

Contributions

J.P.H conducted all chemistry and radiochemistry. M.J.E. conducted all cellular assays. J.P.H., M.J.E., S.L.R. and J.W. conducted in vivo and ex vivo experiments. J.P.H., M.J.E. C.L.S and J.S.L. designed the experiments, analyzed data and wrote the paper.

Corresponding authors

Correspondence to Charles L Sawyers or Jason S Lewis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods, Supplementary Figures 1–22 and Supplementary Tables 1–8 (PDF 8258 kb)

Supplementary Video 1

Maximum intensity projection (MIP) video of the 89Zr-mTf PET image of the Hi-Myc (12 month) mouse shown in Figure 3. The video shows the three-dimensional distribution of 89Zr-mTf at 16 h after administration. The prostate and bladder are visible as spatially resolved masses showing high contrast in the lower abdomen. (WMV 1009 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holland, J., Evans, M., Rice, S. et al. Annotating MYC status with 89Zr-transferrin imaging. Nat Med 18, 1586–1591 (2012). https://doi.org/10.1038/nm.2935

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2935

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer