Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Direct regulation of blood pressure by smooth muscle cell mineralocorticoid receptors

Abstract

Hypertension is a cardiovascular risk factor present in over two-thirds of people over age 60 in North America; elevated blood pressure correlates with increased risk of heart attack, stroke and progression to heart and kidney failure. Current therapies are insufficient to control blood pressure in almost half of these patients1,2. The mineralocorticoid receptor (MR), acting in the kidney, is known to regulate blood pressure through aldosterone binding and stimulation of sodium retention3. However, recent studies support the concept that the MR also has extrarenal actions4,5,6,7 and that defects in sodium handling alone do not fully explain the development of hypertension and associated cardiovascular mortality8,9. We and others have identified functional MR in human vascular smooth muscle cells (SMCs)10,11, suggesting that vascular MR might directly regulate blood pressure. Here we show that mice with SMC-specific deficiency of the MR have decreased blood pressure as they age without defects in renal sodium handling or vascular structure. Aged mice lacking MR in SMCs (SMC-MR) have reduced vascular myogenic tone, agonist-dependent contraction and expression and activity of L-type calcium channels. Moreover, SMC-MR contributes to angiotensin II–induced vascular oxidative stress, vascular contraction and hypertension. This study identifies a new role for vascular MR in blood pressure control and in vascular aging and supports the emerging hypothesis that vascular tone contributes directly to systemic blood pressure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lower blood pressure in aged mice with SMC-specific MR deficiency.
Figure 2: Intact renal MR function in SMC-MR–deficient mice.
Figure 3: Normal vascular structure with decreased tone in mice with SMC-specific MR deficiency.
Figure 4: SMC-MR contributes to the hypertensive, contractile and oxidative stress responses to AngII.

Similar content being viewed by others

References

  1. Gradman, A.H. Role of angiotensin II type 1 receptor antagonists in the treatment of hypertension in patients aged >or=65 years. Drugs Aging 26, 751–767 (2009).

    Article  CAS  Google Scholar 

  2. Logan, A.G. Hypertension in aging patients. Expert Rev. Cardiovasc. Ther. 9, 113–120 (2011).

    Article  CAS  Google Scholar 

  3. Bhargava, A., Wang, J. & Pearce, D. Regulation of epithelial ion transport by aldosterone through changes in gene expression. Mol. Cell. Endocrinol. 217, 189–196 (2004).

    Article  CAS  Google Scholar 

  4. McCurley, A. & Jaffe, I.Z. Mineralocorticoid receptors in vascular function and disease. Mol. Cell. Endocrinol. 350, 256–265 (2012).

    Article  CAS  Google Scholar 

  5. Jaffe, I.Z. et al. Placental growth factor mediates aldosterone-dependent vascular injury in mice. J. Clin. Invest. 120, 3891–3900 (2010).

    Article  CAS  Google Scholar 

  6. Levy, D.G., Rocha, R. & Funder, J.W. Distinguishing the antihypertensive and electrolyte effects of eplerenone. J. Clin. Endocrinol. Metab. 89, 2736–2740 (2004).

    Article  CAS  Google Scholar 

  7. Nguyen Dinh Cat, A. et al. The endothelial mineralocorticoid receptor regulates vasoconstrictor tone and blood pressure. FASEB J. 24, 2454–2463 (2010).

    Article  Google Scholar 

  8. Stolarz-Skrzypek, K. et al. Fatal and nonfatal outcomes, incidence of hypertension, and blood pressure changes in relation to urinary sodium excretion. J. Am. Med. Assoc. 305, 1777–1785 (2011).

    Article  CAS  Google Scholar 

  9. Taylor, R.S., Ashton, K.E., Moxham, T., Hooper, L. & Ebrahim, S. Reduced dietary salt for the prevention of cardiovascular disease: a meta-analysis of randomized controlled trials. Am. J. Hypertens. 24, 843–853 (2011).

    Article  CAS  Google Scholar 

  10. Funder, J.W., Pearce, P.T., Smith, R. & Campbell, J. Vascular type I aldosterone binding sites are physiological mineralocorticoid receptors. Endocrinology 125, 2224–2226 (1989).

    Article  CAS  Google Scholar 

  11. Jaffe, I.Z. & Mendelsohn, M.E. Angiotensin II and aldosterone regulate gene transcription via functional mineralocortocoid receptors in human coronary artery smooth muscle cells. Circ. Res. 96, 643–650 (2005).

    Article  CAS  Google Scholar 

  12. Rogerson, F.M. & Fuller, P.J. Mineralocorticoid action. Steroids 65, 61–73 (2000).

    Article  CAS  Google Scholar 

  13. Berger, S. et al. Mineralocorticoid receptor knockout mice: pathophysiology of Na+ metabolism. Proc. Natl. Acad. Sci. USA 95, 9424–9429 (1998).

    Article  CAS  Google Scholar 

  14. Berger, S., Bleich, M., Schmid, W., Greger, R. & Schutz, G. Mineralocorticoid receptor knockout mice: lessons on Na+ metabolism. Kidney Int. 57, 1295–1298 (2000).

    Article  CAS  Google Scholar 

  15. Ronzaud, C. et al. Impairment of sodium balance in mice deficient in renal principal cell mineralocorticoid receptor. J. Am. Soc. Nephrol. 18, 1679–1687 (2007).

    Article  CAS  Google Scholar 

  16. Ronzaud, C., Loffing, J., Gretz, N., Schutz, G. & Berger, S. Inducible renal principal cell-specific mineralocorticoid receptor gene inactivation in mice. Am. J. Physiol. Renal Physiol. 300, F756–F760 (2011).

    Article  CAS  Google Scholar 

  17. Pitt, B. et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N. Engl. J. Med. 341, 709–717 (1999).

    Article  CAS  Google Scholar 

  18. Pitt, B. et al. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N. Engl. J. Med. 348, 1309–1321 (2003).

    Article  CAS  Google Scholar 

  19. Zannad, F. et al. Eplerenone in patients with systolic heart failure and mild symptoms. N. Engl. J. Med. 364, 11–21 (2011).

    Article  CAS  Google Scholar 

  20. Funder, J.W. & Mihailidou, A.S. Aldosterone and mineralocorticoid receptors: Clinical studies and basic biology. Mol. Cell. Endocrinol. 301, 2–6 (2009).

    Article  CAS  Google Scholar 

  21. Wendling, O., Bornert, J.M., Chambon, P. & Metzger, D. Efficient temporally-controlled targeted mutagenesis in smooth muscle cells of the adult mouse. Genesis 47, 14–18 (2009).

    Article  CAS  Google Scholar 

  22. Ledoux, J., Werner, M.E., Brayden, J.E. & Nelson, M.T. Calcium-activated potassium channels and the regulation of vascular tone. Physiology (Bethesda) 21, 69–78 (2006).

    CAS  Google Scholar 

  23. Ambroisine, M.L. et al. Aldosterone-induced coronary dysfunction in transgenic mice involves the calcium-activated potassium (BKCa) channels of vascular smooth muscle cells. Circulation 116, 2435–2443 (2007).

    Article  CAS  Google Scholar 

  24. Krug, A.W. et al. Elevated mineralocorticoid receptor activity in aged rat vascular smooth muscle cells promotes a proinflammatory phenotype via extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase and epidermal growth factor receptor-dependent pathways. Hypertension 55, 1476–1483 (2010).

    Article  CAS  Google Scholar 

  25. Cassis, P., Conti, S., Remuzzi, G. & Benigni, A. Angiotensin receptors as determinants of life span. Pflugers Arch. 459, 325–332 (2010).

    Article  CAS  Google Scholar 

  26. Ungvari, Z., Kaley, G., de Cabo, R., Sonntag, W.E. & Csiszar, A. Mechanisms of vascular aging: new perspectives. J. Gerontol. A Biol. Sci. Med. Sci. 65, 1028–1041 (2010).

    Article  Google Scholar 

  27. Xue, B., Pamidimukkala, J. & Hay, M. Sex differences in the development of angiotensin II–induced hypertension in conscious mice. Am. J. Physiol. Heart Circ. Physiol. 288, H2177–H2184 (2005).

    Article  CAS  Google Scholar 

  28. Touyz, R.M. Reactive oxygen species and angiotensin II signaling in vascular cells–implications in cardiovascular disease. Braz. J. Med. Biol. Res. 37, 1263–1273 (2004).

    Article  CAS  Google Scholar 

  29. Rautureau, Y., Paradis, P. & Schiffrin, E.L. Cross-talk between aldosterone and angiotensin signaling in vascular smooth muscle cells. Steroids 76, 834–839 (2011).

    CAS  Google Scholar 

  30. Mendelsohn, M.E. In hypertension, the kidney is not always the heart of the matter. J. Clin. Invest. 115, 840–844 (2005).

    Article  CAS  Google Scholar 

  31. Id, D., Bertog, S.C., Wunderlich, N. & Sievert, H. Catheter-based renal sympathectomy. J. Cardiovasc. Surg. (Torino) 51, 721–739 (2010).

    CAS  Google Scholar 

  32. Sellers, M.M. & Stallone, J.N. Sympathy for the devil: the role of thromboxane in the regulation of vascular tone and blood pressure. Am. J. Physiol. Heart Circ. Physiol. 294, H1978–H1986 (2008).

    Article  CAS  Google Scholar 

  33. Poulsen, C.B., Al-Mashhadi, R.H., Cribbs, L.L., Skott, O. & Hansen, P.B. T-type voltage-gated calcium channels regulate the tone of mouse efferent arterioles. Kidney Int. 79, 443–451 (2011).

    Article  CAS  Google Scholar 

  34. Wang, W., Pang, L. & Palade, P. Angiotensin II upregulates Ca(V)1.2 protein expression in cultured arteries via endothelial H(2)O(2) production. J. Vasc. Res. 48, 67–78 (2011).

    Article  CAS  Google Scholar 

  35. Metzger, D., Clifford, J., Chiba, H. & Chambon, P. Conditional site-specific recombination in mammalian cells using a ligand-dependent chimeric Cre recombinase. Proc. Natl. Acad. Sci. USA 92, 6991–6995 (1995).

    Article  CAS  Google Scholar 

  36. Newfell, B.G. et al. Aldosterone regulates vascular gene transcription via oxidative stress–dependent and –independent pathways. Arterioscler. Thromb. Vasc. Biol. 31, 1871–1880 (2011).

    Article  CAS  Google Scholar 

  37. Zhu, Y. et al. Abnormal vascular function and hypertension in mice deficient in estrogen receptor β. Science 295, 505–508 (2002).

    Article  CAS  Google Scholar 

  38. Pires, P.W. et al. Doxycycline, a matrix metalloprotease inhibitor, reduces vascular remodeling and damage after cerebral ischemia in stroke-prone spontaneously hypertensive rats. Am. J. Physiol. Heart Circ. Physiol. 301, H87–H97 (2011).

    Article  CAS  Google Scholar 

  39. Rigsby, C.S., Pollock, D.M. & Dorrance, A.M. Spironolactone improves structure and increases tone in the cerebral vasculature of male spontaneously hypertensive stroke-prone rats. Microvasc. Res. 73, 198–205 (2007).

    Article  CAS  Google Scholar 

  40. Yang, Y. et al. Heterogeneity in function of small artery smooth muscle BKCa: involvement of the β1-subunit. J. Physiol. (Lond.) 587, 3025–3044 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Mouse Clinical Institute (Illkirch) for help in generating MRf/f mice, Y. Yang, A. Stupica and Z. Nourian for technical assistance, and J.D. Jaffe for assistance with figures. This work was supported by grants from the US National Institutes of Health (HL095590 to I.Z.J., HL092241 to M.A.H. and T32 HL069770) and the American Heart Association (11GRNT7240000 to I.Z.J. and 11POST7590096 to A.M.).

Author information

Authors and Affiliations

Authors

Contributions

A.M., M.A.H., M.E.M. and I.Z.J. designed the experiments. A.M., P.W.P., S.B.B., M.A., M.J.Z. and A.M.D. obtained the data and analyzed it with advice from I.Z.J. D.M. and P.C. created the MRf/f and SMA-Cre-ERT2 mice. A.M. and I.Z.J. wrote the manuscript. All authors participated in discussion, contributed ideas and edited the manuscript.

Corresponding author

Correspondence to Iris Z Jaffe.

Ethics declarations

Competing interests

M.E.M. is employed by Merck and retains an academic appointment at Tufts University School of Medicine.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Tables 1 and 2 (PDF 588 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCurley, A., Pires, P., Bender, S. et al. Direct regulation of blood pressure by smooth muscle cell mineralocorticoid receptors. Nat Med 18, 1429–1433 (2012). https://doi.org/10.1038/nm.2891

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2891

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing