Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Untuning the tumor metabolic machine: Targeting cancer metabolism: a bedside lesson

Several decades of scientific observations followed by years of basic and now clinical research support the notion that the metabolic power of tumor cells can provide the long-desired Achilles' heel of cancer. Yet many questions remain as to what defines the true metabolic makeup of a tumor and whether well-known factors and pathways involved in metabolic signaling act as tumor suppressors or oncogenes. In 'Bedside to Bench', Kıvanç Birsoy, David M. Sabatini and Richard Possemato discuss how retrospective studies of diabetic individuals with pancreatic cancer treated with the antidiabetic drug metformin point to a possible anticancer effect for this drug. Further research will need to discern whether this drug acts at the organismal level or by directly targeting the power plant of tumor cells. In 'Bench to Bedside', Regina M. Young and M. Celeste Simon peruse the complex function of a key metabolic factor that mediates the cell's response to low oxygen levels, often found in tumors. This hypoxia-inducible factor (HIF) comes in two flavors, which can be either tumor promoting or tumor suppressive, depending on the type of cancer. Because of this, the therapeutic use of HIF inhibitors must proceed with caution. Further defining the relationship between metabolic regulation of HIF and tumor progression may open up new diagnostic tools and treatments.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Potential effects of metformin on tumor growth.

References

  1. 1

    Ward, P.S. & Thompson, C.B. Cancer Cell 21, 297–308 (2012).

    CAS  Article  Google Scholar 

  2. 2

    Eng, C., Kiuru, M., Fernandez, M.J. & Aaltonen, L.A. Nat. Rev. Cancer 3, 193–202 (2003).

    CAS  Article  Google Scholar 

  3. 3

    Dang, L., Jin, S. & Su, S.M. Trends Mol. Med. 16, 387–397 (2010).

    CAS  Article  Google Scholar 

  4. 4

    Possemato, R. et al. Nature 476, 346–350 (2011).

    CAS  Article  Google Scholar 

  5. 5

    Jain, M. et al. Science 336, 1040–1044 (2012).

    CAS  Article  Google Scholar 

  6. 6

    DeBerardinis, R.J., Lum, J.J., Hatzivassiliou, G. & Thompson, C.B. Cell Metab. 7, 11–20 (2008).

    CAS  Article  Google Scholar 

  7. 7

    Sanli, Y. et al. Ann. Nucl. Med. 26, 345–350 (2012).

    CAS  Article  Google Scholar 

  8. 8

    Kalaany, N.Y. & Sabatini, D.M. Nature 458, 725–731 (2009).

    CAS  Article  Google Scholar 

  9. 9

    Seyfried, B.T., Kiebish, M., Marsh, J. & Mukherjee, P. J. Cancer Res. Ther. 5 Suppl 1, S7–S15 (2009).

    CAS  Article  Google Scholar 

  10. 10

    Broome, J.D. Cancer Treat. Rep. 65 Suppl 4, 111–114 (1981).

    CAS  PubMed  Google Scholar 

  11. 11

    Pelicano, H., Martin, D.S., Xu, R.H. & Huang, P. Oncogene 25, 4633–4646 (2006).

    CAS  Article  Google Scholar 

  12. 12

    Sadeghi, N., Abbruzzese, J.L., Yeung, S.C., Hassan, M. & Li, D. Clin. Cancer Res. 18, 2905–2912 (2012).

    CAS  Article  Google Scholar 

  13. 13

    Decensi, A. et al. Cancer Prev. Res. (Phila.) 3, 1451–1461 (2010).

    CAS  Article  Google Scholar 

  14. 14

    Buzzai, M. et al. Cancer Res. 67, 6745–6752 (2007).

    CAS  Article  Google Scholar 

  15. 15

    Bailey, C.J. & Turner, R.C. N. Engl. J. Med. 334, 574–579 (1996).

    CAS  Article  Google Scholar 

  16. 16

    Zhou, G. et al. J. Clin. Invest. 108, 1167–1174 (2001).

    CAS  Article  Google Scholar 

  17. 17

    Shaw, R.J. et al. Proc. Natl. Acad. Sci. USA 101, 3329–3335 (2004).

    CAS  Article  Google Scholar 

  18. 18

    Clark, R.A. & Pavlis, M. J. Invest. Dermatol. 129, 529–531 (2009).

    CAS  Article  Google Scholar 

  19. 19

    Hawley, S.A., Gadalla, A.E., Olsen, G.S. & Hardie, D.G. Diabetes 51, 2420–2425 (2002).

    CAS  Article  Google Scholar 

  20. 20

    Schneider, M.B. et al. Gastroenterology 120, 1263–1270 (2001).

    CAS  Article  Google Scholar 

  21. 21

    Marin-Valencia, I. et al. Cell Metab. 15, 827–837 (2012).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Richard Possemato.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Birsoy, K., Sabatini, D. & Possemato, R. Untuning the tumor metabolic machine: Targeting cancer metabolism: a bedside lesson. Nat Med 18, 1022–1023 (2012). https://doi.org/10.1038/nm.2870

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing