Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Viral infections and atopy in asthma pathogenesis: new rationales for asthma prevention and treatment

Abstract

Prospective birth cohort studies tracking asthma initiation and consolidation in community cohorts have identified viral infections occurring against a background of allergic sensitization to aeroallergens as a uniquely potent risk factor for the expression of acute severe asthma-like symptoms and for the ensuing development of asthma that can persist through childhood and into adulthood. A combination of recent experimental and human studies have suggested that underlying this bipartite process are a series of interactions between antiviral and atopic inflammatory pathways that are mediated by local activation of myeloid cell populations in the airway mucosa and the parallel programming and recruitment of their replacements from bone marrow. Targeting key components of these pathways at the appropriate stages of asthma provides new opportunities for the treatment of established asthma but, more crucially, for primary and secondary prevention of asthma during childhood.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: The inflammatory cycle in asthma pathogenesis.
Figure 2: Cellular processes underlying virus-associated atopic asthma exacerbations.
Figure 3: The atopic march unmasked?

References

  1. Busse, W.W. & Lemanske, R.F. Asthma. N. Engl. J. Med. 344, 350–362 (2001).

    CAS  Google Scholar 

  2. Busse, W.W. The relationship between viral infections and onset of allergic diseases and asthma. Clin. Exp. Allergy 19, 1–9 (1989).

    CAS  Google Scholar 

  3. Copenhaver, C.C. et al. Cytokine response patterns, exposure to viruses, and respiratory infections in the first year of life. Am. J. Respir. Crit. Care Med. 170, 175–180 (2004).

    Google Scholar 

  4. Stern, D.A., Morgan, W., Wright, A., Guerra, S. & Martinez, F. Poor airway function in early infancy and lung function by age 22 years: a non-selective longitudinal cohort study. Lancet 370, 758–764 (2007).

    Google Scholar 

  5. Holt, P. et al. Towards improved prediction of risk for atopy and asthma amongst preschoolers: a prospective cohort study. J. Allergy Clin. Immunol. 125, 653–659 (2010).

    Google Scholar 

  6. Oddy, W.H., de Klerk, N.H., Sly, P.D. & Holt, P.G. The effects of respiratory infections, atopy, and breastfeeding on childhood asthma. Eur. Respir. J. 19, 899–905 (2002).

    CAS  Google Scholar 

  7. Illi, S. et al. Early childhood infectious diseases and the development of asthma up to school age: a birth cohort study. Br. Med. J. 322, 390–395 (2001).

    CAS  Google Scholar 

  8. Sly, P.D. et al. Early identification of atopy in the prediction of persistent asthma in children. Lancet 372, 1100–1106 (2008).

    Google Scholar 

  9. Jackson, D.J. et al. Evidence for a causal relationship between allergic sensitization and rhinovirus wheezing in early life. Am. J. Respir. Crit. Care Med. 185, 281–285 (2012).

    Google Scholar 

  10. Jackson, D.J. et al. Allergic sensitization is a risk factor for rhinovirus wheezing illnesses during early childhood. J. Allergy Clin. Immunol. 125, AB116 (2010).

    Google Scholar 

  11. Olenec, J.P. et al. Weekly monitoring of children with asthma for infections and illness during common cold seasons. J. Allergy Clin. Immunol. 125, 1001–1006 (2010).

    Google Scholar 

  12. Martinez, F.D. Heterogeneity of the association between lower respiratory illness in infancy and subsequent asthma. Proc. Am. Thorac. Soc. 2, 157–161 (2005).

    CAS  Google Scholar 

  13. Rakes, G.P. et al. Rhinovirus and respiratory syncytial virus in wheezing children requiring emergency care. IgE and eosinophil analyses. Am. J. Respir. Crit. Care Med. 159, 785–790 (1999).

    CAS  Google Scholar 

  14. Bochkov, Y.A. et al. Molecular modeling, organ culture and reverse genetics for a newly identified human rhinovirus C. Nat. Med. 17, 627–632 (2011).

    CAS  Google Scholar 

  15. Wu, P. et al. Evidence of a causal role of winter virus infection during infancy in early childhood asthma. Am. J. Respir. Crit. Care Med. 178, 1123–1129 (2008).

    Google Scholar 

  16. Stein, R.T. & Martinez, F.D. Respiratory syncytial virus and asthma: still no final answer. Thorax 65, 1033–1034 (2010).

    Google Scholar 

  17. Hollams, E.M. et al. Elucidation of asthma phenotypes in atopic teenagers through parallel immunophenotypic and clinical profiling. J. Allergy Clin. Immunol. 124, 463–470 (2009).

    CAS  Google Scholar 

  18. Wood, L.J. et al. Allergen-induced increases in bone marrow T lymphocytes and interleukin-5 expression in subjects with asthma. Am. J. Respir. Crit. Care Med. 166, 883–889 (2002).

    Google Scholar 

  19. Miller, E.K. et al. A mechanistic role for type III interferon-l1 in asthma exacerbations mediated by human rhinoviruses. Am. J. Respir. Crit. Care Med. 185, 508–516 (2012).

    CAS  Google Scholar 

  20. Johnston, S.L. Innate immunity in the pathogenesis of virus-induced asthma exacerbations. Proc. Am. Thorac. Soc. 4, 267–270 (2007).

    CAS  Google Scholar 

  21. Wark, P.A.B. et al. Asthmatic bronchial epithelial cells have a deficient innate immune response to infection with rhinovirus. J. Exp. Med. 201, 937–947 (2005).

    CAS  Google Scholar 

  22. Contoli, M. et al. Role of deficient type III interferon-l production in asthma exacerbations. Nat. Med. 12, 1023–1026 (2006).

    CAS  Google Scholar 

  23. Holt, P.G., Strickland, D.H., Wikstrom, M.E. & Jahnsen, F.L. Regulation of immunological homeostasis in the respiratory tract. Nat. Rev. Immunol. 8, 142–152 (2008).

    CAS  Google Scholar 

  24. Smit, J.J., Rudd, B.D. & Lukacs, N.W. Plasmacytoid dendritic cells inhibit pulmonary immunopathology and promote clearance of respiratory syncytial virus. J. Exp. Med. 203, 1153–1159 (2006).

    CAS  Google Scholar 

  25. de Heer, H.J. et al. Essential role of lung plasmacytoid dendritic cells in preventing asthmatic reactions to harmless inhaled antigen. J. Exp. Med. 200, 89–98 (2004).

    CAS  Google Scholar 

  26. McWilliam, A.S., Marsh, A.M. & Holt, P.G. Inflammatory infiltration of the upper airway epithelium during Sendai virus infection: involvement of epithelial dendritic cells. J. Virol. 71, 226–236 (1997).

    CAS  Google Scholar 

  27. Beyer, M. et al. Sustained increases in numbers of pulmonary dendritic cells after respiratory syncytial virus infection. J. Allergy Clin. Immunol. 113, 127–133 (2004).

    Google Scholar 

  28. Gill, M.A. et al. Mobilization of plasmacytoid and myeloid dendritic cells to mucosal sites in children with respiratory syncytial virus and other viral respiratory infections. J. Infect. Dis. 191, 1105–1115 (2005).

    Google Scholar 

  29. Kim, E.Y. et al. Persistent activation of an innate immune response translates respiratory viral infection into chronic lung disease. Nat. Med. 14, 633–640 (2008).

    CAS  Google Scholar 

  30. Pechkovsky, D.V. et al. Alternatively activated alveolar macrophages in pulmonary fibrosis–mediator production and intracellular signal transduction. Clin. Immunol. 137, 89–101 (2010).

    CAS  Google Scholar 

  31. Cheung, D.S. et al. Cutting edge: CD49d+ neutrophils induce FceRI expression on lung dendritic cells in a mouse model of postviral asthma. J. Immunol. 185, 4983–4987 (2010).

    CAS  Google Scholar 

  32. Grayson, M.H. et al. Induction of high-affinity IgE receptor on lung dendritic cells during viral infection leads to mucous cell metaplasia. J. Exp. Med. 204, 2759–2769 (2007).

    CAS  Google Scholar 

  33. Al-Garawi, A. et al. Shifting of immune responsiveness to house dust mite by influenza A infection: genomic insights. J. Immunol. 188, 832–843 (2012).

    CAS  Google Scholar 

  34. Subrata, L.S. et al. Interactions between innate antiviral and atopic immunoinflammatory pathways precipitate and sustain asthma exacerbations in children. J. Immunol. 183, 2793–2800 (2009).

    CAS  Google Scholar 

  35. Blussé van Oud Alblas, A., van der Linden-Schrever, B. & van Furth, R. Origin and kinetics of pulmonary macrophages during an inflammatory reaction induced by intravenous administration of heat-killed bacillus Calmette-Guerin. J. Exp. Med. 154, 235–252 (1981).

    Google Scholar 

  36. Gordon, S. Alternative activation of macrophages. Nat. Rev. Immunol. 3, 23–35 (2003).

    CAS  Google Scholar 

  37. Robays, L.J. et al. Chemokine receptor CCR2 but not CCR5 or CCR6 mediates the increase in pulmonary dendritic cells during allergic airway inflammation. J. Immunol. 178, 5305–5311 (2007).

    CAS  Google Scholar 

  38. Di Rosa, F. & Pabst, R. The bone marrow: a nest for migratory memory T cells. Trends Immunol. 26, 360–366 (2005).

    CAS  Google Scholar 

  39. Cavanagh, L.L. et al. Activation of bone marrow-resident memory T cells by circulating, antigen-bearing dendritic cells. Nat. Immunol. 6, 1029–1037 (2005).

    CAS  Google Scholar 

  40. Hermesh, T., Moltedo, B., Moran, T.M. & Lopez, C.B. Antiviral instruction of bone marrow leukocytes during respiratory viral infections. Cell Host Microbe 7, 343–353 (2010).

    CAS  Google Scholar 

  41. Sihra, B.S., Kon, O.M., Grant, J.A. & Kay, A.B. Expression of high-affinity IgE receptors (Fc e RI) on peripheral blood basophils, monocytes, and eosinophils in atopic and nonatopic subjects: relationship to total serum IgE concentrations. J. Allergy Clin. Immunol. 99, 699–706 (1997).

    CAS  Google Scholar 

  42. Kraft, S. & Kinet, J.P. New developments in FceRI regulation, function and inhibition. Nat. Rev. Immunol. 7, 365–378 (2007).

    CAS  Google Scholar 

  43. Novak, N. et al. Evidence for a differential expression of the Fcε RIγ chain in dendritic cells of atopic and nonatopic donors. J. Clin. Invest. 111, 1047–1056 (2003).

    CAS  Google Scholar 

  44. Maurer, D. et al. Peripheral blood dendritic cells express Fc e RI as a complex composed of Fc e RI a- and Fc e RI g-chains and can use this receptor for IgE-mediated allergen presentation. J. Immunol. 157, 607–616 (1996).

    CAS  Google Scholar 

  45. Novak, N., Kraft, S. & Bieber, T. Unraveling the mission of FceRI on antigen-presenting cells. J. Allergy Clin. Immunol. 111, 38–44 (2003).

    CAS  Google Scholar 

  46. Koraka, P. et al. Elevated levels of total and dengue virus-specific immunoglobulin E in patients with varying disease severity. J. Med. Virol. 70, 91–98 (2003).

    CAS  Google Scholar 

  47. Weber, K.S. et al. Selective recruitment of Th2-type cells and evasion from a cytotoxic immune response mediated by viral macrophage inhibitory protein-II. Eur. J. Immunol. 31, 2458–2466 (2001).

    CAS  Google Scholar 

  48. Bosco, A., Ehteshami, S., Stern, D.A. & Martinez, F.D. Decreased activation of inflammatory networks during acute asthma exacerbations is associated with chronic airflow obstruction. Mucosal Immunol. 3, 399–409 (2010).

    CAS  Google Scholar 

  49. Gill, M.A. et al. Counterregulation between the FceRI pathway and antiviral responses in human plasmacytoid dendritic cells. J. Immunol. 184, 5999–6006 (2010).

    CAS  Google Scholar 

  50. Gauvreau, G.M. & Denburg, J.A. Hemopoietic progenitors: the role of eosinophil/basophil progenitors in allergic airway inflammation. Expert Rev. Clin. Immunol. 1, 87–101 (2005).

    CAS  Google Scholar 

  51. Semper, A.E. et al. Surface expression of Fc e RI on Langerhans' cells of clinically uninvolved skin is associated with disease activity in atopic dermatitis, allergic asthma, and rhinitis. J. Allergy Clin. Immunol. 112, 411–419 (2003).

    CAS  Google Scholar 

  52. Ker, J. & Hartert, T.V. The atopic march: what's the evidence? Ann. Allergy Asthma Immunol. 103, 282–289 (2009).

    Google Scholar 

  53. Demehri, S., Morimoto, M., Holtzman, M.J. & Kopan, R. Skin-derived TSLP triggers progression from epidermal-barrier defects to asthma. PLoS Biol. 7, e1000067 (2009).

    Google Scholar 

  54. Zhang, Z. et al. Thymic stromal lymphopoietin overproduced by keratinocytes in mouse skin aggravates experimental asthma. Proc. Natl. Acad. Sci. USA 106, 1536–1541 (2009).

    CAS  Google Scholar 

  55. Siracusa, M.C. et al. TSLP promotes interleukin-3–independent basophil haematopoiesis and type 2 inflammation. Nature 477, 229–233 (2011).

    CAS  Google Scholar 

  56. Bisgaard, H. et al. Childhood asthma after bacterial colonization of the airway in neonates. N. Engl. J. Med. 357, 1487–1495 (2007).

    CAS  Google Scholar 

  57. Hilty, M. et al. Disordered microbial communities in asthmatic airways. PLoS ONE 5, e8578 (2010).

    Google Scholar 

  58. Huang, Y.J. et al. Airway microbiota and bronchial hyperresponsiveness in patients with suboptimally controlled asthma. J. Allergy Clin. Immunol. 127, 372–381 (2011).

    Google Scholar 

  59. Hales, B.J. et al. Differences in the antibody response to a mucosal bacterial antigen between allergic and non-allergic subjects. Thorax 63, 221–227 (2008).

    CAS  Google Scholar 

  60. Hales, B.J. et al. Antibacterial antibody responses associated with the development of asthma in house dust mite-sensitised and non-sensitised children. Thorax 67, 321–327 (2012).

    Google Scholar 

  61. Hales, B.J. et al. IgE and IgG anti–house dust mite specificities in allergic disease. J. Allergy Clin. Immunol. 118, 361–367 (2006).

    CAS  Google Scholar 

  62. Talbot, T.R. et al. Asthma as a risk factor for invasive pneumococcal disease. N. Engl. J. Med. 352, 2082–2090 (2005).

    CAS  Google Scholar 

  63. Klemets, P. et al. Risk of invasive pneumococcal infections among working age adults with asthma. Thorax 65, 698–702 (2010).

    Google Scholar 

  64. Hollams, E.M. et al. Th2-associated immunity to bacteria in asthma in teenagers and susceptibility to asthma. Eur. Respir. J. 36, 509–516 (2010).

    CAS  Google Scholar 

  65. Choy, D.F. et al. Gene expression patterns of Th2 inflammation and intercellular communication in asthmatic airways. J. Immunol. 186, 1861–1869 (2011).

    CAS  Google Scholar 

  66. Moore, W.C. et al. Identification of asthma phenotypes using cluster analysis in the Severe Asthma Research Program. Am. J. Respir. Crit. Care Med. 181, 315–323 (2010).

    Google Scholar 

  67. Busse, W.W. et al. Randomized trial of omalizumab (anti-IgE) for asthma in inner-city children. N. Engl. J. Med. 364, 1005–1015 (2011).

    CAS  Google Scholar 

  68. Razi, C.H. et al. The immunostimulant OM-85 BV prevents wheezing attacks in preschool children. J. Allergy Clin. Immunol. 126, 763–769 (2010).

    CAS  Google Scholar 

  69. Navarro, S. et al. The oral administration of bacterial extracts prevents asthma via the recruitment of regulatory T cells to the airways. Mucosal Immunol. 4, 53–65 (2011).

    CAS  Google Scholar 

  70. Strickland, D.H. et al. Boosting airway mucosal T-regulatory cell defenses via gastrointestinal microbial stimulation: a potential therapeutic strategy for asthma control. Mucosal Immunol. 4, 43–52 (2011).

    CAS  Google Scholar 

  71. Shaaban, R. et al. Rhinitis and onset of asthma: a longitudinal population-based study. Lancet 372, 1049–1057 (2008).

    Google Scholar 

  72. Sherrill, D.L., Guerra, S., Minervini, M.C., Wright, A.L. & Martinez, F.D. The relation of rhinitis to recurrent cough and wheezing: a longitudinal study. Respir. Med. 99, 1377–1385 (2005).

    Google Scholar 

  73. Jacobsen, L. et al. Specific immunotherapy has long-term preventive effect of seasonal and perennial asthma: 10-year follow-up on the PAT study. Allergy 62, 943–948 (2007).

    CAS  Google Scholar 

  74. Nelson, D.J., McWilliam, A.S., Haining, S. & Holt, P.G. Modulation of airway intraepithelial dendritic cells following exposure to steroids. Am. J. Respir. Crit. Care Med. 151, 475–481 (1995).

    CAS  Google Scholar 

  75. Martinez, F.D. Asthma treatment and asthma prevention: a tale of 2 parallel pathways. J. Allergy Clin. Immunol. 119, 30–33 (2007).

    Google Scholar 

  76. Hibbert, M.E., Hudson, I.L., Lanigan, A., Landau, L.I. & Phelan, P.D. Tracking of lung function in healthy children and adolescents. Pediatr. Pulmonol. 8, 172–177 (1990).

    CAS  Google Scholar 

  77. Hopper, J.L., Hibbert, M.E., Macaskill, G.T., Phelan, P.D. & Landau, L.I. Longitudinal analysis of lung function growth in healthy children and adolescents. J. Appl. Physiol. 70, 770–777 (1991).

    CAS  Google Scholar 

  78. Larsen, G.L. & Colasurdo, G.N. Neural control mechansims within airways: disruption by respiratory syncytial virus. J. Pediatr. 135, 21–27 (1999).

    CAS  Google Scholar 

  79. Sly, P.D. & Flack, F. Susceptibility of children to environmental pollutants. Ann. NY Acad. Sci. 1140, 163–183 (2008).

    CAS  Google Scholar 

  80. Soto-Martinez, M. & Sly, P.D. Relationship between environmental exposures in children and adult lung disease: the case for outdoor exposures. Chron. Respir. Dis. 7, 173–186 (2010).

    Google Scholar 

  81. O'Byrne, P.M., Pedersen, S., Lamm, C., Tan, W. & Busse, W. Severe exacerbations and decline in lung function in asthma. Am. J. Respir. Crit. Care Med. 179, 19–24 (2009).

    Google Scholar 

  82. Holgate, S.T. The airway epithelium is central to the pathogenesis of asthma. Allergol. Int. 57, 1–10 (2008).

    CAS  Google Scholar 

  83. Lloyd, C.M. & Saglani, S. Asthma and allergy: the emerging epithelium. Nat. Med. 16, 273–274 (2010).

    CAS  Google Scholar 

  84. Simoes, E.A. et al. Palivizumab prophylaxis, respiratory syncytial virus, and subsequent recurrent wheezing. J. Pediatr. 151, 34–42 (2007).

    CAS  Google Scholar 

  85. de Vrese, M. et al. Probiotic bacteria reduced duration and severity but not the incidence of common cold episodes in a double blind, randomized, controlled trial. Vaccine 24, 6670–6674 (2006).

    Google Scholar 

  86. Collet, J.P. et al. Effects of an immunostimulating agent on acute exacerbations and hospitalizations in patients with chronic obstructive pulmonary disease. The PARI-IS Study Steering Committee and Research Group. Prevention of Acute Respiratory Infection by an Immunostimulant. Am. J. Respir. Crit. Care Med. 156, 1719–1724 (1997).

    CAS  Google Scholar 

  87. Tandon, M.K. et al. Oral immunotherapy with inactivated nontypeable Haemophilus influenzae reduces severity of acute exacerbations in severe COPD. Chest 137, 805–811 (2010).

    Google Scholar 

  88. Schaad, U.B., Mutterlein, R. & Goffin, H. Immunostimulation with OM-85 in children with recurrent infections of the upper respiratory tract: a double-blind, placebo-controlled multicenter study. Chest 122, 2042–2049 (2002).

    Google Scholar 

  89. Gao, L. et al. A randomized controlled trial of low-dose recombinant human interferons a-2b nasal spray to prevent acute viral respiratory infections in military recruits. Vaccine 28, 4445–4451 (2010).

    CAS  Google Scholar 

  90. Wenzel, S., Wilbraham, D., Fuller, R., Getz, E.B. & Longphre, M. Effect of an interleukin-4 variant on late phase asthmatic response to allergen challenge in asthmatic patients: results of two phase 2a studies. Lancet 370, 1422–1431 (2007).

    CAS  Google Scholar 

  91. Buhl, R. et al. Omalizumab provides long-term control in patients with moderate-to-severe allergic asthma. Eur. Respir. J. 20, 73–78 (2002).

    CAS  Google Scholar 

  92. Solèr, M. et al. The anti-IgE antibody omalizumab reduces exacerbations and steroid requirement in allergic asthmatics. Eur. Respir. J. 18, 254–261 (2001).

    Google Scholar 

  93. Durham, S.R. Sublingual immunotherapy: what have we learnt from the 'big trials'? Curr. Opin. Allergy Clin. Immunol. 8, 577–584 (2008).

    Google Scholar 

  94. Corren, J. et al. Lebrikizumab treatment in adults with asthma. N. Engl. J. Med. 365, 1088–1098 (2011).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick G Holt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Holt, P., Sly, P. Viral infections and atopy in asthma pathogenesis: new rationales for asthma prevention and treatment. Nat Med 18, 726–735 (2012). https://doi.org/10.1038/nm.2768

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2768

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing