Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

ApoB-containing lipoproteins regulate angiogenesis by modulating expression of VEGF receptor 1

Abstract

Despite the clear major contribution of hyperlipidemia to the prevalence of cardiovascular disease in the developed world, the direct effects of lipoproteins on endothelial cells have remained obscure and are under debate. Here we report a previously uncharacterized mechanism of vessel growth modulation by lipoprotein availability. Using a genetic screen for vascular defects in zebrafish, we initially identified a mutation, stalactite (stl), in the gene encoding microsomal triglyceride transfer protein (mtp), which is involved in the biosynthesis of apolipoprotein B (ApoB)-containing lipoproteins. By manipulating lipoprotein concentrations in zebrafish, we found that ApoB negatively regulates angiogenesis and that it is the ApoB protein particle, rather than lipid moieties within ApoB-containing lipoproteins, that is primarily responsible for this effect. Mechanistically, we identified downregulation of vascular endothelial growth factor receptor 1 (VEGFR1), which acts as a decoy receptor for VEGF, as a key mediator of the endothelial response to lipoproteins, and we observed VEGFR1 downregulation in hyperlipidemic mice. These findings may open new avenues for the treatment of lipoprotein-related vascular disorders.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: stl is a zebrafish mutant with excessive angiogenesis.
Figure 2: The excessive angiogenesis phenotype is not caused by global lipid starvation.
Figure 3: Lipoprotein concentrations regulate the expression of VEGFR1.
Figure 4: ApoB particles regulate angiogenesis by directly acting on endothelial cells.

Similar content being viewed by others

References

  1. Yaniv, K. et al. Live imaging of lymphatic development in the zebrafish. Nat. Med. 12, 711–716 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Lawson, N.D. & Weinstein, B.M. In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev. Biol. 248, 307–318 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Hussain, M.M. et al. Microsomal triglyceride transfer protein in plasma and cellular lipid metabolism. Curr. Opin. Lipidol. 19, 277–284 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Raabe, M. et al. Knockout of the abetalipoproteinemia gene in mice: reduced lipoprotein secretion in heterozygotes and embryonic lethality in homozygotes. Proc. Natl. Acad. Sci. USA 95, 8686–8691 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Marza, E. et al. Developmental expression and nutritional regulation of a zebrafish gene homologous to mammalian microsomal triglyceride transfer protein large subunit. Dev. Dyn. 232, 506–518 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Schlegel, A. & Stainier, D.Y. Microsomal triglyceride transfer protein is required for yolk lipid utilization and absorption of dietary lipids in zebrafish larvae. Biochemistry 45, 15179–15187 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Stoletov, K. et al. Vascular lipid accumulation, lipoprotein oxidation, and macrophage lipid uptake in hypercholesterolemic zebrafish. Circ. Res. 104, 952–960 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schlegel, A. & Stainier, D.Y. Lessons from “lower” organisms: what worms, flies, and zebrafish can teach us about human energy metabolism. PLoS Genet. 3, e199 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Shelton, J.M., Lee, M.H., Richardson, J.A. & Patel, S.B. Microsomal triglyceride transfer protein expression during mouse development. J. Lipid Res. 41, 532–537 (2000).

    CAS  PubMed  Google Scholar 

  10. Babin, P.J. & Gibbons, G.F. The evolution of plasma cholesterol: direct utility or a “spandrel” of hepatic lipid metabolism? Prog. Lipid Res. 48, 73–91 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Babin, P.J. et al. Both apolipoprotein E and A-I genes are present in a nonmammalian vertebrate and are highly expressed during embryonic development. Proc. Natl. Acad. Sci. USA 94, 8622–8627 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Thorpe, J.L., Doitsidou, M., Ho, S.Y., Raz, E. & Farber, S.A. Germ cell migration in zebrafish is dependent on HMGCoA reductase activity and prenylation. Dev. Cell 6, 295–302 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Amack, J.D. & Yost, H.J. The T box transcription factor no tail in ciliated cells controls zebrafish left-right asymmetry. Curr. Biol. 14, 685–690 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Berriot-Varoqueaux, N., Aggerbeck, L.P., Samson-Bouma, M. & Wetterau, J.R. The role of the microsomal triglygeride transfer protein in abetalipoproteinemia. Annu. Rev. Nutr. 20, 663–697 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Shoulders, C.C. et al. Abetalipoproteinemia is caused by defects of the gene encoding the 97 kDa subunit of a microsomal triglyceride transfer protein. Hum. Mol. Genet. 2, 2109–2116 (1993).

    Article  CAS  PubMed  Google Scholar 

  16. Rader, D.J. & Brewer, H.B. Jr. Abetalipoproteinemia. New insights into lipoprotein assembly and vitamin E metabolism from a rare genetic disease. J. Am. Med. Assoc. 270, 865–869 (1993).

    Article  CAS  Google Scholar 

  17. Farber, S.A. et al. Genetic analysis of digestive physiology using fluorescent phospholipid reporters. Science 292, 1385–1388 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Pickart, M.A. et al. Genome-wide reverse genetics framework to identify novel functions of the vertebrate secretome. PLoS ONE 1, e104 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Anderson, J.L., Carten, J.D. & Farber, S.A. Zebrafish lipid metabolism: from mediating early patterning to the metabolism of dietary fat and cholesterol. Methods Cell Biol. 101, 111–141 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Breckenridge, W.C. Apolipoprotein C–II deficiency. Adv. Exp. Med. Biol. 201, 211–226 (1986).

    CAS  PubMed  Google Scholar 

  21. Hegele, R.A. et al. An apolipoprotein CII mutation, CIILys19—Thr' identified in patients with hyperlipidemia. Dis. Markers 9, 73–80 (1991).

    CAS  PubMed  Google Scholar 

  22. Sethuraman, G. et al. Familial homozygous hypercholesterolemia: report of two patients and review of the literature. Pediatr. Dermatol. 24, 230–234 (2007).

    Article  PubMed  Google Scholar 

  23. Hegele, R.A. Plasma lipoproteins: genetic influences and clinical implications. Nat. Rev. Genet. 10, 109–121 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Connelly, P.W., Maguire, G.F. & Little, J.A. Apolipoprotein CIISt. Michael. Familial apolipoprotein CII deficiency associated with premature vascular disease. J. Clin. Invest. 80, 1597–1606 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Landmesser, U., Hornig, B. & Drexler, H. Endothelial dysfunction in hypercholesterolemia: mechanisms, pathophysiological importance, and therapeutic interventions. Semin. Thromb. Hemost. 26, 529–537 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Henry, P.D. Hypercholesterolemia and angiogenesis. Am. J. Cardiol. 72, 61C–64C (1993).

    Article  CAS  PubMed  Google Scholar 

  27. Fazio, S. & Linton, M.F. Mouse models of hyperlipidemia and atherosclerosis. Front. Biosci. 6, D515–D525 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Wouters, K., Shiri-Sverdlov, R., van Gorp, P.J., van Bilsen, M. & Hofker, M.H. Understanding hyperlipidemia and atherosclerosis: lessons from genetically modified Apoe and Ldlr mice. Clin. Chem. Lab. Med. 43, 470–479 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Hiratsuka, S., Minowa, O., Kuno, J., Noda, T. & Shibuya, M. Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice. Proc. Natl. Acad. Sci. USA 95, 9349–9354 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Kearney, J.B. et al. Vascular endothelial growth factor receptor Flt-1 negatively regulates developmental blood vessel formation by modulating endothelial cell division. Blood 99, 2397–2407 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Chappell, J.C., Taylor, S.M., Ferrara, N. & Bautch, V.L. Local guidance of emerging vessel sprouts requires soluble Flt-1. Dev. Cell 17, 377–386 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bussman, J. et al. Arteries provide essential guidance cues for lymphatic endothelial cells in the zebrafish trunk. Development 137, 2653–2657 (2010).

    Article  Google Scholar 

  33. Shelness, G.S., Hou, L., Ledford, A.S., Parks, J.S. & Weinberg, R.B. Identification of the lipoprotein initiating domain of apolipoprotein B. J. Biol. Chem. 278, 44702–44707 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Hessler, J.R., Robertson, A.L. Jr. & Chisolm, G.M. III. LDL-induced cytotoxicity and its inhibition by HDL in human vascular smooth muscle and endothelial cells in culture. Atherosclerosis 32, 213–229 (1979).

    Article  CAS  PubMed  Google Scholar 

  35. Usui, R., Shibuya, M., Ishibashi, S. & Maru, Y. Ligand-independent activation of vascular endothelial growth factor receptor 1 by low-density lipoprotein. EMBO Rep. 8, 1155–1161 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ylä-Herttuala, S. & Alitalo, K. On the relationship of LDL and VEGFR1: not just a family affair. EMBO Rep. 8, 1127–1128 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Arany, Z. et al. HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1α. Nature 451, 1008–1012 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Fraisl, P., Baes, M. & Carmeliet, P. Hungry for blood vessels: linking metabolism and angiogenesis. Dev. Cell 14, 313–314 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Hagberg, C.E. et al. Vascular endothelial growth factor B controls endothelial fatty acid uptake. Nature 464, 917–921 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Isogai, S., Lawson, N.D., Torrealday, S., Horiguchi, M. & Weinstein, B.M. Angiogenic network formation in the developing vertebrate trunk. Development 130, 5281–5290 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Roman, B.L. et al. Disruption of acvrl1 increases endothelial cell number in zebrafish cranial vessels. Development 129, 3009–3019 (2002).

    CAS  PubMed  Google Scholar 

  42. Isogai, S., Horiguchi, M. & Weinstein, B.M. The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development. Dev. Biol. 230, 278–301 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Shireman, R., Kilgore, L.L. & Fisher, W.R. Solubilization of apolipoprotein B and its specific binding by the cellular receptor for low density lipoprotein. Proc. Natl. Acad. Sci. USA 74, 5150–5154 (1977).

    Article  CAS  PubMed  Google Scholar 

  44. Nicoli, S., De Sena, G. & Presta, M. Fibroblast growth factor 2–induced angiogenesis in zebrafish: the zebrafish yolk membrane (ZFYM) angiogenesis assay. J. Cell. Mol. Med. 13, 2061–2068 (2009).

    Article  PubMed  Google Scholar 

  45. Habeck, H., Odenthal, J., Walderich, B., Maischein, H. & Schulte-Merker, S. Analysis of a zebrafish VEGF receptor mutant reveals specific disruption of angiogenesis. Curr. Biol. 12, 1405–1412 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Bligh, E.G. & Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917 (1959).

    Article  CAS  PubMed  Google Scholar 

  47. Itkin, M. et al. GLYCOALKALOID METABOLISM1 is required for steroidal alkaloid glycosylation and prevention of phytotoxicity in tomato. Plant Cell 23, 4507–4525 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pham, V.N. et al. Combinatorial function of ETS transcription factors in the developing vasculature. Dev. Biol. 303, 772–783 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Takada, N. & Appel, B. Identification of genes expressed by zebrafish oligodendrocytes using a differential microarray screen. Dev. Dyn. 239, 2041–2047 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Zygmunt, T. et al. Semaphorin-PlexinD1 signaling limits angiogenic potential via the VEGF decoy receptor sFlt1. Dev. Cell 21, 301–314 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hansen, M.B., Nielsen, S.E. & Berg, K. Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J. Immunol. Methods 119, 203–210 (1989).

    Article  CAS  PubMed  Google Scholar 

  52. Sellers, J.A., Hou, L., Athar, H., Hussain, M.M. & Shelness, G.S. A Drosophila microsomal triglyceride transfer protein homolog promotes the assembly and secretion of human apolipoprotein B. Implications for human and insect transport and metabolism. J. Biol. Chem. 278, 20367–20373 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Gore, A.V., Lampugnani, M.G., Dye, L., Dejana, E. & Weinstein, B.M. Combinatorial interaction between CCM pathway genes precipitates hemorrhagic stroke. Dis. Model Mech. 1, 275–281 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank G. Palardy, R. Miyares, N. Nevo, I. Harel, T. Berkutzki, I. Raviv, R. Oren and C. Rot for technical assistance; A. Aharoni for help with GC-MS analyses; E. Zelzer (Weizmann Institute, Israel) for providing the Ldlr-null mice, K. Tordjman (Sourasky Medical Center, Israel) for providing the ApoE-null mice, S. Schulte-Merker (Hubrecht Institute) for providing the vegfr1 plasmid and the Tg(flt1:YFP)hu4624 transgenic line; J. Berliner (University of California Los Angeles, California) for providing human aortic endothelial cells (HAECs); D. Haratz, I. Groskop and A. Shaish for advice regarding lipid analyses; A. Harmelin and N. Stettner for animal care; and I.B. Dawid, E. Tzahor, A. Gross, B. Shilo and J. Torres-Vazquez for critical reading of the manuscript. The authors are grateful to all the members of the Yaniv and Weinstein labs for discussion, technical assistance and continuous support. This work was supported in part by Israel Science Foundation 748/2009 (to K.Y.), Marie Curie Actions-International Reintegration grants FP7-PEOPLE-2009-RG 256393 (to K.Y.), the Yeda-Sela Center (to K.Y.), the Israel Cancer Research Foundation Postdoctoral Fellowship (to I.A.-D.), US National Institutes of Health (NIH) RO1CA126935 (to M.L.I.-A.), NIH T32HL069766 (training grant for T.T.C. and C.M.W.) and NIH HL049373 (to G.S.S.). S.A.F. is funded by the NIH (R56DK093399 and R01GM063904), the Carnegie Institution for Science endowment and the G. Harold and Leila Y. Mathers Charitable Foundation. B.M.W. is supported by the intramural program of the National Institute of Child Health and Human Development, NIH, and by the Foundation Leducq.

Author information

Authors and Affiliations

Authors

Contributions

I.A.-D. conducted experiments, data analyses and wrote the manuscript. Y.E., V.N.P., M.G., G.M., L.G.-B. and O.M. performed zebrafish experiments. G.A. managed the fish facility. D.C., B.L., J.U., K.K. and K.S. contributed to the F3 mutagenesis screen. C.M.W. and T.T.C. performed in vitro studies. I.R. performed lipidomics analyses. W.W. and P.M.M. provided the ApoE-null mice. S.A.F. provided advice in lipids studies. L.C. conducted statistical analyses and developed software for quantification. G.S.S. supervised in vitro experiments and provided advice in lipids studies. M.L.I.-A. supervised in vitro studies. B.M.W. supervised the initial zebrafish studies and provided advice throughout the project. K.Y. conducted experiments and data analyses, wrote the manuscript and supervised the project.

Corresponding author

Correspondence to Karina Yaniv.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 (PDF 1716 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avraham-Davidi, I., Ely, Y., Pham, V. et al. ApoB-containing lipoproteins regulate angiogenesis by modulating expression of VEGF receptor 1. Nat Med 18, 967–973 (2012). https://doi.org/10.1038/nm.2759

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2759

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing