Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Innate and adaptive immune responses in asthma

Abstract

The recognition that asthma is primarily an inflammatory disorder of the airways associated with T helper type 2 (TH2) cell-dependent promotion of IgE production and recruitment of mast cells and eosinophils has provided the rationale for disease control using inhaled corticosteroids and other anti-inflammatory drugs. As more has been discovered about the cytokine, chemokine and inflammatory pathways that are associated with TH2-driven adaptive immunity, attempts have been made to selectively inhibit these in the hope of discovering new therapeutics as predicted from animal models of allergic inflammation. The limited success of this approach, together with the recognition that asthma is more than allergic inflammation, has drawn attention to the innate immune response in this disease. Recent advances in our understanding of the sentinel role played by innate immunity provides new targets for disease prevention and treatment. These include pathways of innate stimulation by environmental or endogenous pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs) to influence the activation and trafficking of DCs, innate sources of cytokines, and the identification of new T cell subsets and lymphoid cells.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Primary sensitization of the airways in the induction of allergic-type asthma.
Figure 2: The pleiotropic effects of Treg cells in suppressing allergic inflammatory pathways.
Figure 3: Different T cell subtypes involved in the pathogenesis of asthma and its differing endotypes.

References

  1. 1

    Bowen, H. et al. Control of cytokine gene transcription in TH1 and TH2 cells. Clin. Exp. Allergy 38, 1422–1431 (2008).

    CAS  Google Scholar 

  2. 2

    Das, J. et al. A critical role for NF-κB in GATA3 expression and TH2 differentiation in allergic airway inflammation. Nat. Immunol. 2, 45–50 (2001).

    CAS  Google Scholar 

  3. 3

    Alfvén, T. et al. Allergic diseases and atopic sensitization in children related to farming and anthroposophic lifestyle—the PARSIFAL study. Allergy 61, 414–421 (2006).

    Google Scholar 

  4. 4

    Ege, M.J. et al. Exposure to environmental microorganisms and childhood asthma. N. Engl. J. Med. 364, 701–709 (2011).

    CAS  Google Scholar 

  5. 5

    Ege, M.J. et al. Not all farming environments protect against the development of asthma and wheeze in children. J. Allergy Clin. Immunol. 119, 1140–1147 (2007).

    Google Scholar 

  6. 6

    Ege, M.J. et al. Prenatal exposure to a farm environment modifies atopic sensitization at birth. J. Allergy Clin. Immunol. 122, 407–412 (2008).

    Google Scholar 

  7. 7

    Sallmann, E. et al. High-affinity IgE receptors on dendritic cells exacerbate TH2-dependent inflammation. J. Immunol. 187, 164–171 (2011).

    CAS  Google Scholar 

  8. 8

    Nelson, D.J. et al. Development of the airway intraepithelial dendritic cell network in the rat from class II major histocompatibility (Ia)-negative precursors: differential regulation of Ia expression at different levels of the respiratory tract. J. Exp. Med. 179, 203–212 (1994).

    CAS  Google Scholar 

  9. 9

    McWilliam, A.S., Nelson, D., Thomas, J.A. & Holt, P.G. Rapid dendritic cell recruitment is a hallmark of the acute inflammatory response at mucosal surfaces. J. Exp. Med. 179, 1331–1336 (1994).

    CAS  Google Scholar 

  10. 10

    Hammad, H. et al. Inflammatory dendritic cells–not basophils–are necessary and sufficient for induction of Th2 immunity to inhaled house dust mite a llergen. J. Exp. Med. 207, 2097–2111 (2010).

    CAS  Google Scholar 

  11. 11

    Paul, W.E. & Zhu, J. How are TH2-type immune responses initiated and amplified? Nat. Rev. Immunol. 10, 225–235 (2010).

    CAS  Google Scholar 

  12. 12

    van Panhuys, N. et al. Basophils are the major producers of IL-4 during primary helminth infection. J. Immunol. 186, 2719–2728 (2011).

    CAS  Google Scholar 

  13. 13

    Trompette, A. et al. Allergenicity resulting from functional mimicry of a Toll-like receptor complex protein. Nature 457, 585–588 (2009).

    CAS  Google Scholar 

  14. 14

    Lu, T.X. et al. MicroRNA-21 limits in vivo immune response-mediated activation of the IL-12/IFN-γ pathway, Th1 polarization, and the severity of delayed-type hypersensitivity. J. Immunol. 187, 3362–3373 (2011).

    CAS  Google Scholar 

  15. 15

    Simpson, A. et al. Beyond atopy: multiple patterns of sensitization in relation to asthma in a birth cohort study. Am. J. Respir. Crit. Care Med. 181, 1200–1206 (2010).

    Google Scholar 

  16. 16

    Moffatt, M.F. et al. A large-scale, consortium-based genomewide association study of asthma. N. Engl. J. Med. 363, 1211–1221 (2010).

    CAS  Google Scholar 

  17. 17

    Granada, M. et al. A genome-wide association study of plasma total IgE concentrations in the Framingham Heart Study. J. Allergy Clin. Immunol. 129, 840–845 (2012).

    CAS  Google Scholar 

  18. 18

    Xiao, C. et al. Defective epithelial barrier function in asthma. J. Allergy Clin. Immunol. 128, 549–556 (2011).

    CAS  Google Scholar 

  19. 19

    Jacquet, A. Interactions of airway epithelium with protease allergens in the allergic response. Clin. Exp. Allergy 41, 305–311 (2011).

    CAS  Google Scholar 

  20. 20

    Hackett, T.L. et al. Intrinsic phenotypic differences of asthmatic epithelium and its inflammatory responses to RSV and air pollution. Am. J. Respir. Cell Mol. Biol. 45, 1090–1100 (2011).

    CAS  Google Scholar 

  21. 21

    Sajjan, U. et al. Rhinovirus disrupts the barrier function of polarized airway epithelial cells. Am. J. Respir. Crit. Care Med. 178, 1271–1281 (2008).

    CAS  Google Scholar 

  22. 22

    Groschwitz, K.R. & Hogan, S.P. Intestinal barrier function: molecular regulation and disease pathogenesis. J. Allergy Clin. Immunol. 124, 3–20 (2009).

    CAS  Google Scholar 

  23. 23

    Tieu, D.D. et al. Evidence for diminished levels of epithelial psoriasin and calprotectin in chronic rhinosinusitis. J. Allergy Clin. Immunol. 125, 667–675 (2010).

    CAS  Google Scholar 

  24. 24

    Hughes, J.L. et al. Reduced structural proteins in the conjunctival epithelium in allergic eye disease. Allergy 61, 1268–1274 (2006).

    CAS  Google Scholar 

  25. 25

    O'Regan, G.M., Sandilands, A., McLean, W.H. & Irvine, A.D. Filaggrin in atopic dermatitis. J. Allergy Clin. Immunol. 124 (suppl. 2), R2–R6 (2009).

    CAS  Google Scholar 

  26. 26

    McLean, W.H. The allergy gene: how a mutation in a skin protein revealed a link between eczema and asthma. F1000 Med. Rep. 3, 2 (2011).

    Google Scholar 

  27. 27

    Zoltán Veres, T. et al. Spatiotemporal and functional behavior of airway dendritic cells visualized by two-photon microscopy. Am. J. Pathol. 179, 603–609 (2011).

    Google Scholar 

  28. 28

    Blank, F. et al. Macrophages and dendritic cells express tight junction proteins and exchange particles in an in vitro model of the human airway wall. Immunobiology 216, 86–95 (2011).

    CAS  Google Scholar 

  29. 29

    Lambrecht, B.N. & Hammad, H. Biology of lung dendritic cells at the origin of asthma. Immunity 31, 412–424 (2009).

    CAS  Google Scholar 

  30. 30

    Kassianos, A.J., Jongbloed, S.L., Hart, D.N. & Radford, K.J. Isolation of human blood DC subtypes. Methods Mol. Biol. 595, 45–54 (2010).

    Google Scholar 

  31. 31

    Dua, B. et al. Myeloid and plasmacytoid dendritic cells in induced sputum after allergen inhalation in subjects with asthma. J. Allergy Clin. Immunol. 126, 133–139 (2010).

    CAS  Google Scholar 

  32. 32

    Sha, Q. et al. Activation of airway epithelial cells by Toll-like receptor agonists. Am. J. Respir. Cell Mol. Biol. 31, 358–364 (2004).

    Google Scholar 

  33. 33

    Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. Cell 124, 783–801 (2006).

    CAS  Google Scholar 

  34. 34

    Willart, M.A. & Lambrecht, B.N. The danger within: endogenous danger signals, atopy and asthma. Clin. Exp. Allergy 39, 12–19 (2009).

    CAS  Google Scholar 

  35. 35

    Lam, D. et al. Airway house dust extract exposures modify allergen-induced airway hypersensitivity responses by TLR4-dependent and independent pathways. J. Immunol. 181, 2925–2932 (2008).

    CAS  Google Scholar 

  36. 36

    Perros, F., Hoogsteden, H.C., Coyle, A.J., Lambrecht, B.N. & Hammad, H. Blockade of CCR4 in a humanized model of asthma reveals a critical role for DC-derived CCL17 and CCL22 in attracting TH2 cells and inducing airway inflammation. Allergy 64, 995–1002 (2009).

    CAS  Google Scholar 

  37. 37

    Jackson, D.J. et al. Wheezing rhinovirus illnesses in early life predict asthma development in high-risk children. Am. J. Respir. Crit. Care Med. 178, 667–672 (2008).

    Google Scholar 

  38. 38

    Jartti, T. et al. Allergic sensitization is associated with rhinovirus-, but not other virus-, induced wheezing in children. Pediatr. Allergy Immunol. 21, 1008–1014 (2010).

    CAS  Google Scholar 

  39. 39

    Jackson, D.J. et al. Evidence for a causal relationship between allergic sensitization and rhinovirus wheezing in early life. Am. J. Respir. Crit. Care Med. 185, 281–285 (2012).

    Google Scholar 

  40. 40

    Wark, P.A. et al. Asthmatic bronchial epithelial cells have a deficient innate immune response to infection with rhinovirus. J. Exp. Med. 201, 937–947 (2005).

    CAS  Google Scholar 

  41. 41

    Contoli, M. et al. Role of deficient type III interferon-λ production in asthma exacerbations. Nat. Med. 12, 1023–1026 (2006).

    CAS  Google Scholar 

  42. 42

    Jartti, T. & Korppi, M. Rhinovirus-induced bronchiolitis and asthma development. Pediatr. Allergy Immunol. 22, 350–355 (2011).

    Google Scholar 

  43. 43

    Bosco, A. et al. Decreased activation of inflammatory networks during acute asthma exacerbations is associated with chronic airflow obstruction. Mucosal Immunol. 3, 399–409 (2010).

    CAS  Google Scholar 

  44. 44

    McWilliam, A.S. et al. Dendritic cells are recruited into the airway epithelium during the inflammatory response to a broad spectrum of stimuli. J. Exp. Med. 184, 2429–2432 (1996).

    CAS  Google Scholar 

  45. 45

    Uller, L. et al. Double-stranded RNA induces disproportionate expression of thymic stromal lymphopoietin versus interferon-ββ in bronchial epithelial cells from donors with asthma. Thorax 65, 626–632 (2010).

    Google Scholar 

  46. 46

    Cakebread, J.A. et al. Exogenous IFN-β has antiviral and anti-inflammatory properties in primary bronchial epithelial cells from asthmatic subjects exposed to rhinovirus. J. Allergy Clin. Immunol. 127, 1148–1154 (2011).

    CAS  Google Scholar 

  47. 47

    von Mutius, E. & Vercelli, D. Farm living: effects on childhood asthma and allergy. Nat. Rev. Immunol. 10, 861–868 (2010).

    CAS  Google Scholar 

  48. 48

    Schaub, B. et al. Maternal farm exposure modulates neonatal immune mechanisms through regulatory T cells. J. Allergy Clin. Immunol. 123, 774–782 (2009).

    CAS  Google Scholar 

  49. 49

    Gern, J.E. Barnyard microbes and childhood asthma. N. Engl. J. Med. 364, 769–770 (2011).

    CAS  Google Scholar 

  50. 50

    Haahtela, T. Allergy is rare where butterflies flourish in a biodiverse environment. Allergy 64, 1799–1803 (2009).

    CAS  Google Scholar 

  51. 51

    Rodriguez, B. et al. Germ-free status and altered caecal subdominant microbiota are associated with a high susceptibility to cow's milk allergy in mice. FEMS Microbiol. Ecol. 76, 133–144 (2011).

    CAS  Google Scholar 

  52. 52

    Hilty, M. et al. Disordered microbial communities in asthmatic airways. PLoS ONE 5, e8578 (2010).

    Google Scholar 

  53. 53

    Bisgaard, H. et al. Childhood asthma after bacterial colonization of the airway in neonates. N. Engl. J. Med. 357, 1487–1495 (2007).

    CAS  Google Scholar 

  54. 54

    Gern, J.E. Barnyard microbes and childhood asthma. N. Engl. J. Med. 364, 769–770 (2011).

    CAS  Google Scholar 

  55. 55

    Rabinovitch, N. et al. Importance of the personal endotoxin cloud in school-age children with asthma. J. Allergy Clin. Immunol. 116, 1053–1057 (2005).

    CAS  Google Scholar 

  56. 56

    Platts-Mills, J.A. et al. Airborne endotoxin in homes with domestic animals: implications for cat-specific tolerance. J. Allergy Clin. Immunol. 116, 384–389 (2005).

    CAS  Google Scholar 

  57. 57

    Shalev, I. et al. Making sense of regulatory T cell suppressive function. Semin. Immunol. 23, 282–292 (2011).

    CAS  Google Scholar 

  58. 58

    Akdis, C.A. & Akdis, M. Mechanisms of allergen-specific immunotherapy. J. Allergy Clin. Immunol. 127, 18–27 (2011).

    CAS  Google Scholar 

  59. 59

    Cady, C.T. et al. IgG antibodies produced during subcutaneous allergen immunotherapy mediate inhibition of basophil activation via a mechanism involving both FcγRIIA and FcγRIIB. Immunol. Lett. 130, 57–65 (2010).

    CAS  Google Scholar 

  60. 60

    Schaub, B. et al. Maternal farm exposure modulates neonatal immune mechanisms through regulatory T cells. J. Allergy Clin. Immunol. 123, 774–782 (2009).

    CAS  Google Scholar 

  61. 61

    Baru, A.M. et al. Selective depletion of Foxp3+ Treg during sensitization phase aggravates experimental allergic airway inflammation. Eur. J. Immunol. 40, 2259–2266 (2010).

    CAS  Google Scholar 

  62. 62

    Mold, J.E. et al. Maternal alloantigens promote the development of tolerogenic fetal regulatory T cells in utero. Science 322, 1562–1565 (2008).

    CAS  Google Scholar 

  63. 63

    Andersson, J. et al. CD4+ FoxP3+ regulatory T cells confer infectious tolerance in a TGF-β–dependent manner. J. Exp. Med. 205, 1975–1981 (2008).

    CAS  Google Scholar 

  64. 64

    Conrad, M.L. et al. Maternal TLR signaling is required for prenatal asthma protection by the nonpathogenic microbe Acinetobacter lwoffii F78. J. Exp. Med. 206, 2869–2877 (2009).

    CAS  Google Scholar 

  65. 65

    Brand, S. et al. Epigenetic regulation in murine offspring as a novel mechanism for transmaternal asthma protection induced by microbes. J. Allergy Clin. Immunol. 128, 618–625 (2011).

    CAS  Google Scholar 

  66. 66

    Rudd, C.E., Taylor, A. & Schneider, H. CD28 and CTLA-4 coreceptor expression and signal transduction. Immunol. Rev. 229, 12–26 (2009).

    CAS  Google Scholar 

  67. 67

    Kato, A. et al. TLR3- and TH2-cytokine–dependent production of thymic stromal lymphopoietin in human airway epithelial cells. J. Immunol. 179, 1080–1087 (2007).

    CAS  Google Scholar 

  68. 68

    Liew, F.Y., Pitman, N.I. & McInnes, I.B. Disease-associated functions of IL-33: the new kid in the IL-1 family. Nat. Rev. Immunol. 10, 103–110 (2010).

    CAS  Google Scholar 

  69. 69

    Wang, Y.H. et al. IL-25 augments type 2 immune responses by enhancing the expansion and functions of TSLP-DC–activated TH2 memory cells. J. Exp. Med. 204, 1837–1847 (2007).

    CAS  Google Scholar 

  70. 70

    Corrigan, C.J. et al. Allergen-induced expression of IL-25 and IL-25 receptor in atopic asthmatic airways and late-phase cutaneous responses. J. Allergy Clin. Immunol. 128, 116–124 (2011).

    CAS  Google Scholar 

  71. 71

    Iwakura, Y. et al. Functional specialization of interleukin-17 family members. Immunity 34, 149–162 (2011).

    CAS  Google Scholar 

  72. 72

    Saenz, S.A. et al. IL25 elicits a multipotent progenitor cell population that promotes TH2 cytokine responses. Nature 464, 1362–1366 (2010).

    CAS  Google Scholar 

  73. 73

    Neill, D.R. et al. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 464, 1367–1370 (2010).

    CAS  Google Scholar 

  74. 74

    Barlow, J.L. et al. Innate IL-13–producing nuocytes arise during allergic lung inflammation and contribute to airways hyperreactivity. J. Allergy Clin. Immunol. 129, 191–198 (2012).

    CAS  Google Scholar 

  75. 75

    Yasuda, K. et al. Contribution of IL-33–activated type II innate lymphoid cells to pulmonary eosinophilia in intestinal nematode-infected mice. Proc. Natl. Acad. Sci. USA 109, 3451–3456 (2012).

    CAS  Google Scholar 

  76. 76

    Veldhoen, M. et al. Transforming growth factor-β 'reprograms' the differentiation of T helper 2 cells and promotes an interleukin 9–producing subset. Nat. Immunol. 9, 1341–1346 (2008).

    CAS  Google Scholar 

  77. 77

    Houssiau, F.A. et al. A cascade of cytokines is responsible for IL-9 expression in human T cells. Involvement of IL-2, IL-4, and IL-10. J. Immunol. 154, 2624–2630 (1995).

    CAS  Google Scholar 

  78. 78

    Goswami, R. et al. STAT6-dependent regulation of TH9 development. J. Immunol. 188, 968–975 (2012).

    CAS  Google Scholar 

  79. 79

    Faulkner, H., Renauld, J.C., Van Snick, J. & Grencis, R.K. Interleukin-9 enhances resistance to the intestinal nematode Trichuris muris. Infect. Immun. 66, 3832–3840 (1998).

    CAS  Google Scholar 

  80. 80

    Shimbara, A. et al. IL-9 and its receptor in allergic and nonallergic lung disease: increased expression in asthma. J. Allergy Clin. Immunol. 105, 108–115 (2000).

    CAS  Google Scholar 

  81. 81

    Erpenbeck, V.J. et al. Segmental allergen challenge in patients with atopic asthma leads to increased IL-9 expression in bronchoalveolar lavage fluid lymphocytes. J. Allergy Clin. Immunol. 111, 1319–1327 (2003).

    CAS  Google Scholar 

  82. 82

    Bryce, P.J. Revolution 9: the backwards and forwards evidence surrounding interleukin-9. Am. J. Respir. Crit. Care Med. 183, 834–835 (2011).

    Google Scholar 

  83. 83

    Steenwinckel, V. et al. IL-13 mediates in vivo IL-9 activities on lung epithelial cells but not on hematopoietic cells. J. Immunol. 178, 3244–3251 (2007).

    CAS  Google Scholar 

  84. 84

    Kearley, J. et al. IL-9 governs allergen-induced mast cell numbers in the lung and chronic remodeling of the airways. Am. J. Respir. Crit. Care Med. 183, 865–875 (2011).

    CAS  Google Scholar 

  85. 85

    Parker, J.M. et al. Safety profile and clinical activity of multiple subcutaneous doses of MEDI-528, a humanized anti–interleukin-9 monoclonal antibody, in two randomized phase 2a studies in subjects with asthma. BMC Pulm. Med. 11, 14 (2011).

    CAS  Google Scholar 

  86. 86

    Harrington, L.E. et al. Interleukin 17–producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol. 6, 1123–1132 (2005).

    CAS  Google Scholar 

  87. 87

    Park, H. et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol. 6, 1133–1141 (2005).

    CAS  Google Scholar 

  88. 88

    Nembrini, C., Marsland, B.J. & Kopf, M. IL-17–producing T cells in lung immunity and inflammation. J. Allergy Clin. Immunol. 123, 986–994 (2009).

    CAS  Google Scholar 

  89. 89

    Louten, J., Boniface, K. & de Waal Malefyt, R. Development and function of TH17 cells in health and disease. J. Allergy Clin. Immunol. 123, 1004–1011 (2009).

    CAS  Google Scholar 

  90. 90

    Wilson, R.H. et al. Allergic sensitization through the airway primes TH17-dependent neutrophilia and airway hyperresponsiveness. Am. J. Respir. Crit. Care Med. 180, 720–730 (2009).

    CAS  Google Scholar 

  91. 91

    Yang, X.O. et al. Regulation of inflammatory responses by IL-17F. J. Exp. Med. 205, 1063–1075 (2008).

    CAS  Google Scholar 

  92. 92

    Schnyder-Candrian, S. et al. Interleukin-17 is a negative regulator of established allergic asthma. J. Exp. Med. 203, 2715–2725 (2006).

    CAS  Google Scholar 

  93. 93

    Barlow, J.L. et al. Reciprocal expression of IL-25 and IL-17A is important for allergic airways hyperreactivity. Clin. Exp. Allergy 41, 1447–1455 (2011).

    CAS  Google Scholar 

  94. 94

    Kudo, M. et al. IL-17A produced by αβ T cells drives airway hyper-responsiveness in mice and enhances mouse and human airway smooth muscle contraction. Nat. Med. 18, 547–554 (2012).

    CAS  Google Scholar 

  95. 95

    Dunkelberger, J.R. & Song, W.C. Role and mechanism of action of complement in regulating T cell immunity. Mol. Immunol. 47, 2176–2186 (2010).

    CAS  Google Scholar 

  96. 96

    Humbles, A.A. et al. A role for the C3a anaphylatoxin receptor in the effector phase of asthma. Nature 406, 998–1001 (2000).

    CAS  Google Scholar 

  97. 97

    Drouin, S.M. et al. Absence of the complement anaphylatoxin C3a receptor suppresses TH2 effector functions in a murine model of pulmonary allergy. J. Immunol. 169, 5926–5933 (2002).

    CAS  Google Scholar 

  98. 98

    Baelder, R. et al. Pharmacological targeting of anaphylatoxin receptors during the effector phase of allergic asthma suppresses airway hyperresponsiveness and airway inflammation. J. Immunol. 174, 783–789 (2005).

    CAS  Google Scholar 

  99. 99

    Wills-Karp, M. Complement activation pathways: a bridge between innate and adaptive immune responses in asthma. Proc. Am. Thorac. Soc. 4, 247–251 (2007).

    CAS  Google Scholar 

  100. 100

    Cosmi, L. et al. Identification of a novel subset of human circulating memory CD4+ T cells that produce both IL-17A and IL-4. J. Allergy Clin. Immunol. 125, 222–230 (2010).

    CAS  Google Scholar 

  101. 101

    Chakir, J. et al. Airway remodeling-associated mediators in moderate to severe asthma: effect of steroids on TGF-β, IL-11, IL-17, and type I and type III collagen expression. J. Allergy Clin. Immunol. 111, 1293–1298 (2003).

    CAS  Google Scholar 

  102. 102

    Doe, C. et al. Expression of the T helper 17–associated cytokines IL-17A and IL-17F in asthma and COPD. Chest 138, 1140–1147 (2010).

    CAS  Google Scholar 

  103. 103

    Chaudhuri, R. et al. Effects of smoking cessation on lung function and airway inflammation in smokers with asthma. Am. J. Respir. Crit. Care Med. 174, 127–133 (2006).

    CAS  Google Scholar 

  104. 104

    Uddin, M. et al. Enhancement of neutrophil function by the bronchial epithelium stimulated by epidermal growth factor. Eur. Respir. J. 31, 714–724 (2008).

    CAS  Google Scholar 

  105. 105

    Capone, M. et al. Human invariant V α 24-J α Q TCR supports the development of CD1d-dependent NK1.1+ and NK1.1 T cells in transgenic mice. J. Immunol. 170, 2390–2398 (2003).

    CAS  Google Scholar 

  106. 106

    Brennan, P.J. et al. Invariant natural killer T cells recognize lipid self antigen induced by microbial danger signals. Nat. Immunol. 12, 1202–1211 (2011).

    CAS  Google Scholar 

  107. 107

    Meyer, E.H. et al. Glycolipid activation of invariant T cell receptor+ NK T cells is sufficient to induce airway hyperreactivity independent of conventional CD4+ T cells. Proc. Natl. Acad. Sci. USA 103, 2782–2787 (2006).

    CAS  Google Scholar 

  108. 108

    Akbari, O. et al. CD4+ invariant T-cell-receptor+ natural killer T cells in bronchial asthma. N. Engl. J. Med. 354, 1117–1129 (2006).

    CAS  Google Scholar 

  109. 109

    Vijayanand, P. et al. Invariant natural killer T cells in asthma and chronic obstructive pulmonary disease. N. Engl. J. Med. 356, 1410–1422 (2007).

    CAS  Google Scholar 

  110. 110

    Wingender, G. et al. Invariant NKT cells are required for airway inflammation induced by environmental antigens. J. Exp. Med. 208, 1151–1162 (2011).

    CAS  Google Scholar 

  111. 111

    Altin, J., Shen, C. & Liston, A. Understanding the genetic regulation of IgE production. Blood Rev. 24, 163–169 (2010).

    CAS  Google Scholar 

  112. 112

    Xiong, H. et al. Sequential class switching is required for the generation of high affinity IgE antibodies. J. Exp. Med. 209, 353–364 (2012).

    CAS  Google Scholar 

  113. 113

    Acharya, M. et al. CD23/FcɛRII: molecular multi-tasking. Clin. Exp. Immunol. 162, 12–23 (2010).

    CAS  Google Scholar 

  114. 114

    Ying, S. et al. Local expression of epsilon germline gene transcripts and RNA for the ɛ heavy chain of IgE in the bronchial mucosa in atopic and nonatopic asthma. J. Allergy Clin. Immunol. 107, 686–692 (2001).

    CAS  Google Scholar 

  115. 115

    Barnes, P.J. Intrinsic asthma: not so different from allergic asthma but driven by superantigens? Clin. Exp. Allergy 39, 1145–1151 (2009).

    CAS  Google Scholar 

  116. 116

    Bel, E. & ten Brinke, A. A rational approach to the management of severe refractory asthma. Treat. Respir. Med. 4, 365–379 (2005).

    Google Scholar 

  117. 117

    Kon, O.M. et al. Randomised, dose-ranging, placebo-controlled study of chimeric antibody to CD4 (keliximab) in chronic severe asthma. Lancet 352, 1109–1113 (1998).

    CAS  Google Scholar 

  118. 118

    Kon, O.M. et al. The effects of an anti-CD4 monoclonal antibody, keliximab, on peripheral blood CD4+ T cells in asthma. Eur. Respir. J. 18, 45–52 (2001).

    CAS  Google Scholar 

  119. 119

    Wang, X.F. et al. Interleukin-2 receptor antagonists in liver transplantation: a meta-analysis of randomized trials. Transplant. Proc. 42, 4567–4572 (2010).

    CAS  Google Scholar 

  120. 120

    Busse, W.W. et al. Daclizumab improves asthma control in patients with moderate to severe persistent asthma: a randomized, controlled trial. Am. J. Respir. Crit. Care Med. 178, 1002–1008 (2008).

    CAS  Google Scholar 

  121. 121

    Panina-Bordignon, P. et al. The C–C chemokine receptors CCR4 and CCR8 identify airway T cells of allergen-challenged atopic asthmatics. J. Clin. Invest. 107, 1357–1364 (2001).

    CAS  Google Scholar 

  122. 122

    Vijayanand, P. et al. Chemokine receptor 4 plays a key role in T cell recruitment into the airways of asthmatic patients. J. Immunol. 184, 4568–4574 (2010).

    CAS  Google Scholar 

  123. 123

    Reyes, C.L. Americas Antibody Congress 2009. 21–23 September 2009, Washington DC, USA. IDrugs 12, 692–694 (2009).

    Google Scholar 

  124. 124

    Yano, H. et al. Defucosylated anti CC chemokine receptor 4 monoclonal antibody combined with immunomodulatory cytokines: a novel immunotherapy for aggressive/refractory Mycosis fungoides and Sezary syndrome. Clin. Cancer Res. 13, 6494–6500 (2007).

    CAS  Google Scholar 

  125. 125

    Matsuoka, T. et al. Prostaglandin D2 as a mediator of allergic asthma. Science 287, 2013–2017 (2000).

    CAS  Google Scholar 

  126. 126

    Arima, M. & Fukuda, T. Prostaglandin D2 receptors DP and CRTH2 in the pathogenesis of asthma. Curr. Mol. Med. 8, 365–375 (2008).

    CAS  Google Scholar 

  127. 127

    Gervais, F.G. et al. Pharmacological characterization of MK-7246, a potent and selective CRTH2 (chemoattractant receptor-homologous molecule expressed on T-helper type 2 cells) antagonist. Mol. Pharmacol. 79, 69–76 (2011).

    CAS  Google Scholar 

  128. 128

    Barnes, N. et al. A randomized, double-blind, placebo-controlled study of the CRTH2 antagonist OC000459 in moderate persistent asthma. Clin. Exp. Allergy 42, 38–48 (2012).

    CAS  Google Scholar 

  129. 129

    Karman, J. et al. Ligation of cytotoxic T lymphocyte antigen-4 to the TCR inhibits T cell activation and directs differentiation into FOXP3+ regulatory T cells. J. Biol. Chem. published online (15 February 2012), doi:10.1074/jbc.M111.283705.

    CAS  Google Scholar 

  130. 130

    Álvarez-Quiroga, C. et al. CTLA-4-Ig therapy diminishes the frequency but enhances the function of Treg cells in patients with rheumatoid arthritis. J. Clin. Immunol. 31, 588–595 (2011).

    Google Scholar 

  131. 131

    Bour-Jordan, H. et al. Costimulation controls diabetes by altering the balance of pathogenic and regulatory T cells. J. Clin. Invest. 114, 979–987 (2004).

    CAS  Google Scholar 

  132. 132

    Jaffar, Z.H. et al. Essential role for both CD80 and CD86 costimulation, but not CD40 interactions, in allergen-induced TH2 cytokine production from asthmatic bronchial tissue: role for αβ, but not γδ, T cells. J. Immunol. 163, 6283–6291 (1999).

    CAS  Google Scholar 

  133. 133

    Hidi, R. et al. Role of B7–CD28/CTLA-4 costimulation and NF-κB in allergen-induced T cell chemotaxis by IL-16 and RANTES. J. Immunol. 164, 412–418 (2000).

    CAS  Google Scholar 

  134. 134

    Lordan, J.L. et al. The role of CD28–B7 costimulation in allergen-induced cytokine release by bronchial mucosa from patients with moderately severe asthma. J. Allergy Clin. Immunol. 108, 976–981 (2001).

    CAS  Google Scholar 

  135. 135

    Holgate, S.T. Pathophysiology of asthma: what has our current understanding taught us about new therapeutic approaches? J. Allergy Clin. Immunol. 128, 495–505 (2011).

    CAS  Google Scholar 

  136. 136

    Hansbro, P.M., Kaiko, G.E. & Foster, P.S. Cytokine/anti-cytokine therapy—novel treatments for asthma? Br. J. Pharmacol. 163, 81–95 (2011).

    CAS  Google Scholar 

  137. 137

    Berry, M.A. et al. Sputum and bronchial submucosal IL-13 expression in asthma and eosinophilic bronchitis. J. Allergy Clin. Immunol. 114, 1106–1109 (2004).

    CAS  Google Scholar 

  138. 138

    Woodruff, P.G. et al. T-helper type 2–driven inflammation defines major subphenotypes of asthma. Am. J. Respir. Crit. Care Med. 180, 388–395 (2009).

    CAS  Google Scholar 

  139. 139

    Corren, J. et al. Lebrikizumab treatment in adults with asthma. N. Engl. J. Med. 365, 1088–1098 (2011).

    CAS  Google Scholar 

  140. 140

    Nair, P. et al. Mepolizumab for prednisone-dependent asthma with sputum eosinophilia. N. Engl. J. Med. 360, 985–993 (2009).

    CAS  Google Scholar 

  141. 141

    Haldar, P. et al. Mepolizumab and exacerbations of refractory eosinophilic asthma. N. Engl. J. Med. 360, 973–984 (2009).

    CAS  Google Scholar 

  142. 142

    Abonia, J.P. & Putnam, P.E. Mepolizumab in eosinophilic disorders. Expert Rev. Clin. Immunol. 7, 411–417 (2011).

    CAS  Google Scholar 

  143. 143

    Castro, M. et al. Reslizumab for poorly controlled, eosinophilic asthma: a randomized, placebo-controlled study. Am. J. Respir. Crit. Care Med. 184, 1125–1132 (2011).

    CAS  Google Scholar 

  144. 144

    Spergel, J.M. et al. Reslizumab in children and adolescents with eosinophilic esophagitis: Results of a double-blind, randomized, placebo-controlled trial. J. Allergy Clin. Immunol. 129, 456–463 (2012).

    CAS  Google Scholar 

  145. 145

    Gevaert, P. et al. Nasal IL-5 levels determine the response to anti–IL-5 treatment in patients with nasal polyps. J. Allergy Clin. Immunol. 118, 1133–1141 (2006).

    CAS  Google Scholar 

  146. 146

    Kolbeck, R. et al. MEDI-563, a humanized anti–IL-5 receptor α mAb with enhanced antibody-dependent cell-mediated cytotoxicity function. J. Allergy Clin. Immunol. 125, 1344–1353 (2010).

    CAS  Google Scholar 

  147. 147

    Busse, W.W. et al. Safety profile, pharmacokinetics, and biologic activity of MEDI-563, an anti–IL-5 receptor α antibody, in a phase I study of subjects with mild asthma. J. Allergy Clin. Immunol. 125, 1237–1244 (2010).

    CAS  Google Scholar 

  148. 148

    Wenzel, S.E. et al. A randomized, double-blind, placebo-controlled study of tumor necrosis factor-α blockade in severe persistent asthma. Am. J. Respir. Crit. Care Med. 179, 549–558 (2009).

    CAS  Google Scholar 

  149. 149

    Silvestri, M. et al. High serum levels of tumour necrosis factor-α and interleukin-8 in severe asthma: markers of systemic inflammation? Clin. Exp. Allergy 36, 1373–1381 (2006).

    CAS  Google Scholar 

  150. 150

    Baines, K.J. et al. Differential gene expression and cytokine production from neutrophils in asthma phenotypes. Eur. Respir. J. 35, 522–531 (2010).

    CAS  Google Scholar 

  151. 151

    Holmes, A.M., Solari, R. & Holgate, S.T. Animal models of asthma: value, limitations and opportunities for alternative approaches. Drug Discov. Today 16, 659–670 (2011).

    Google Scholar 

Download references

Acknowledgements

The author is a current UK Medical Research Council program grant holder.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Stephen T Holgate.

Ethics declarations

Competing interests

S.T.H. is a consultant to and nonexecutive director of Synairgen and an occasional consultant to Novartis, MSD and Amgen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Holgate, S. Innate and adaptive immune responses in asthma. Nat Med 18, 673–683 (2012). https://doi.org/10.1038/nm.2731

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing