Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Activation of AMP-activated protein kinase α2 by nicotine instigates formation of abdominal aortic aneurysms in mice in vivo

Abstract

Smoking is the only modifiable risk factor that is associated with the development, expansion and rupture of abdominal aortic aneurysm (AAA). However, the causative link between cigarette smoke and AAA is unknown. Here we report a causative link between smoking and AAA in vivo. Acute infusion of angiotensin II (AngII) or nicotine, a major component of cigarette smoke, markedly increased the incidence of AAA in apolipoprotein E (apoE) knockout (Apoe−/−) mice and in mice deficient in both apoE and the AMP-activated kinase α1 subunit (AMPK-α1) (Apoe−/−; Prkaa1−/− mice). In contrast, genetic deletion of AMPK-α2 (Apoe−/−; Prkaa2−/− mice) ablated nicotine- or AngII-triggered AAA in vivo. Mechanistically, we found that both nicotine and AngII activated AMPK-α2 in cultured vascular smooth muscle cells (VSMCs), resulting in the phosphorylation of activator protein 2α (AP-2α) and consequent matrix metallopeptidase 2 (MMP2) gene expression. We conclude that smoking (through nicotine) instigates AAA through AMPK-α2–mediated AP-2α–dependent MMP2 expression in VSMCs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: AMPK-α2 deficiency prevents nicotine-induced AAA formation in Apoe−/− mice.
Figure 2: Nicotine infusion results in oxidative stress and enhances the expression of MMP2 and MMP9 through AMPK-α2 in vivo.
Figure 3: Bone marrow reconstitution shows a key role for vascular-specific AMPK-α2 deficiency in AAA formation.
Figure 4: Inhibition of AMPK-α2, but not AMPK-α1, abolishes nicotine or AngII induction of MMP2 mRNA and protein expression and MMP2 activity in VSMCs.
Figure 5: AP-2α mediates nicotine- or AngII-induced AMPK-α2–dependent MMP2 protein expression in VSMCs.
Figure 6: Nicotine or AngII promotes the binding of AMPK-α2 to AP-2α and AMPK-α2–dependent AP-2α Ser219 phosphorylation.

Similar content being viewed by others

References

  1. Vorp, D.A. & Vande Geest, J.P. Biomechanical determinants of abdominal aortic aneurysm rupture. Arterioscler. Thromb. Vasc. Biol. 25, 1558–1566 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Nordon, I.M., Hinchliffe, R.J., Loftus, I.M. & Thompson, M.M. Pathophysiology and epidemiology of abdominal aortic aneurysms. Nat. Rev. Cardiol. 8, 92–102 (2011).

    Article  PubMed  Google Scholar 

  3. Satoh, K. et al. Cyclophilin A enhances vascular oxidative stress and the development of angiotensin II–induced aortic aneurysms. Nat. Med. 15, 649–656 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shah, P.K. Inflammation, metalloproteinases, and increased proteolysis: an emerging pathophysiological paradigm in aortic aneurysm. Circulation 96, 2115–2117 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Thompson, R.W., Geraghty, P.J. & Lee, J.K. Abdominal aortic aneurysms: basic mechanisms and clinical implications. Curr. Probl. Surg. 39, 110–230 (2002).

    Article  PubMed  Google Scholar 

  6. Rajagopalan, S. et al. Angiotensin II–mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J. Clin. Invest. 97, 1916–1923 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Browatzki, M. et al. Angiotensin II stimulates matrix metalloproteinase secretion in human vascular smooth muscle cells via nuclear factor-κB and activator protein 1 in a redox-sensitive manner. J. Vasc. Res. 42, 415–423 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Thomas, M. et al. Deletion of p47phox attenuates angiotensin II–induced abdominal aortic aneurysm formation in apolipoprotein E–deficient mice. Circulation 114, 404–413 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mu, J., Brozinick, J.T. Jr., Valladares, O., Bucan, M. & Birnbaum, M.J. A role for AMP-activated protein kinase in contraction- and hypoxia-regulated glucose transport in skeletal muscle. Mol. Cell 7, 1085–1094 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Choi, S.L. et al. The regulation of AMP-activated protein kinase by H(2)O(2). Biochem. Biophys. Res. Commun. 287, 92–97 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Han, Y., Wang, Q., Song, P., Zhu, Y. & Zou, M.H. Redox regulation of the AMP-activated protein kinase. PLoS ONE 5, e15420 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zhang, M. et al. Thromboxane receptor activates the AMP-activated protein kinase in vascular smooth muscle cells via hydrogen peroxide. Circ. Res. 102, 328–337 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Nagata, D. et al. AMP-activated protein kinase inhibits angiotensin II–stimulated vascular smooth muscle cell proliferation. Circulation 110, 444–451 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Song, P. et al. AMPKα2 deletion exacerbates neointima formation by upregulating Skp2 in vascular smooth muscle cells. Circ. Res. 109, 1230–1239 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Henningfield, J.E., Stapleton, J.M., Benowitz, N.L., Grayson, R.F. & London, E.D. Higher levels of nicotine in arterial than in venous blood after cigarette smoking. Drug Alcohol Depend. 33, 23–29 (1993).

    Article  CAS  PubMed  Google Scholar 

  16. Benowitz, N.L. Cigarette smoking and cardiovascular disease: pathophysiology and implications for treatment. Prog. Cardiovasc. Dis. 46, 91–111 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Lu, H., Rateri, D.L., Cassis, L.A. & Daugherty, A. The role of the renin-angiotensin system in aortic aneurysmal diseases. Curr. Hypertens. Rep. 10, 99–106 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Daugherty, A. & Cassis, L.A. Mouse models of abdominal aortic aneurysms. Arterioscler. Thromb. Vasc. Biol. 24, 429–434 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Wang, Y.X. et al. Fasudil, a Rho-kinase inhibitor, attenuates angiotensin II–induced abdominal aortic aneurysm in apolipoprotein E–deficient mice by inhibiting apoptosis and proteolysis. Circulation 111, 2219–2226 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Daugherty, A. et al. Angiotensin II infusion promotes ascending aortic aneurysms: attenuation by CCR2 deficiency in apoE−/− mice. Clin. Sci. (Lond.) 118, 681–689 (2010).

    Article  CAS  Google Scholar 

  21. Gavrila, D. et al. Vitamin E inhibits abdominal aortic aneurysm formation in angiotensin II–infused apolipoprotein E–deficient mice. Arterioscler. Thromb. Vasc. Biol. 25, 1671–1677 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rateri, D.L. et al. Endothelial cell-specific deficiency of Ang II type 1a receptors attenuates Ang II–induced ascending aortic aneurysms in LDL receptor–/– mice. Circ. Res. 108, 574–581 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pearce, W.H. & Shively, V.P. Abdominal aortic aneurysm as a complex multifactorial disease: interactions of polymorphisms of inflammatory genes, features of autoimmunity, and current status of MMPs. Ann. NY Acad. Sci. 1085, 117–132 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Aziz, F. & Kuivaniemi, H. Role of matrix metalloproteinase inhibitors in preventing abdominal aortic aneurysm. Ann. Vasc. Surg. 21, 392–401 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Longo, G.M. et al. Matrix metalloproteinases 2 and 9 work in concert to produce aortic aneurysms. J. Clin. Invest. 110, 625–632 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pyo, R. et al. Targeted gene disruption of matrix metalloproteinase-9 (gelatinase B) suppresses development of experimental abdominal aortic aneurysms. J. Clin. Invest. 105, 1641–1649 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang, S. et al. AMPKα2 deletion causes aberrant expression and activation of NAD(P)H oxidase and consequent endothelial dysfunction in vivo: role of 26S proteasomes. Circ. Res. 106, 1117–1128 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Park, M.J. et al. Nerve growth factor induces endothelial cell invasion and cord formation by promoting matrix metalloproteinase-2 expression through the phosphatidylinositol 3-kinase/Akt signaling pathway and AP-2 transcription factor. J. Biol. Chem. 282, 30485–30496 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Zhang, J. et al. Neural tube, skeletal and body wall defects in mice lacking transcription factor AP-2. Nature 381, 238–241 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Schorle, H., Meier, P., Buchert, M., Jaenisch, R. & Mitchell, P.J. Transcription factor AP-2 essential for cranial closure and craniofacial development. Nature 381, 235–238 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. García, M.A., Campillos, M., Marina, A., Valdivieso, F. & Vazquez, J. Transcription factor AP-2 activity is modulated by protein kinase A–mediated phosphorylation. FEBS Lett. 444, 27–31 (1999).

    Article  PubMed  Google Scholar 

  32. Gwinn, D.M. et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell 30, 214–226 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bungard, D. et al. Signaling kinase AMPK activates stress-promoted transcription via histone H2B phosphorylation. Science 329, 1201–1205 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Egan, D.F. et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331, 456–461 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Kim, J., Kundu, M., Viollet, B. & Guan, K.L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 13, 132–141 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Golledge, J. et al. Reduced expansion rate of abdominal aortic aneurysms in patients with diabetes may be related to aberrant monocyte-matrix interactions. Eur. Heart J. 29, 665–672 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Wang, S. et al. Acute inhibition of guanosine triphosphate cyclohydrolase 1 uncouples endothelial nitric oxide synthase and elevates blood pressure. Hypertension 52, 484–490 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Choi, H.C. et al. Reactive nitrogen species is required for the activation of the AMP-activated protein kinase by statin in vivo. J. Biol. Chem. 283, 20186–20197 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Miyama, N. et al. Hyperglycemia limits experimental aortic aneurysm progression. J. Vasc. Surg. 52, 975–983 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Dua, M.M. et al. Hyperglycemia modulates plasminogen activator inhibitor-1 expression and aortic diameter in experimental aortic aneurysm disease. Surgery 148, 429–435 (2010).

    Article  PubMed  Google Scholar 

  41. Nishikawa, K., Toker, A., Johannes, F.J., Songyang, Z. & Cantley, L.C. Determination of the specific substrate sequence motifs of protein kinase C isozymes. J. Biol. Chem. 272, 952–960 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Maegdefessel, L. et al. MicroRNA-21 blocks abdominal aortic aneurysm development and nicotine-augmented expansion. Sci. Transl. Med. 4, 122ra22 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  43. An, Z. et al. Nicotine-induced activation of AMP-activated protein kinase inhibits fatty acid synthase in 3T3L1 adipocytes: a role for oxidant stress. J. Biol. Chem. 282, 26793–26801 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Dong, Y. et al. Reduction of AMP-activated protein kinase α2 increases endoplasmic reticulum stress and atherosclerosis in vivo. Circulation 121, 792–803 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Thompson, R.W. et al. Production and localization of 92-kilodalton gelatinase in abdominal aortic aneurysms. An elastolytic metalloproteinase expressed by aneurysm-infiltrating macrophages. J. Clin. Invest. 96, 318–326 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Corey, S. & Moran et al. Association of osteoprotegerin with human abdominal aortic aneurysm progression. Circulation. 111, 3119–3125 (2005).

    Article  Google Scholar 

  47. Golledge, J., Muller, J., Daugherty, A. & Norman, P. Abdominal aortic aneurysm: pathogenesis and implications for management. Arterioscler. Thromb. Vasc. Biol. 26, 2605–2613 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Dallas, S.L., Rosser, J.L., Mundy, G.R. & Bonewald, L.F. Proteolysis of latent transforming growth factor-β (TGF-β)-binding protein-1 by osteoclasts. A cellular mechanism for release of TGF-β from bone matrix. J. Biol. Chem. 277, 21352–21360 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. ten Dijke, P. & Arthur, H.M. Extracellular control of TGFβ signalling in vascular development and disease. Nat. Rev. Mol. Cell Biol. 8, 857–869 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Tundulawessa, Y., Yongchaiyud, P., Chutrthong, W. & Tundulawessa, K. The bioequivalent and effect of nicotine formulation gum on smoking cessation. J. Med. Assoc. Thai. 93, 574–579 (2010).

    PubMed  Google Scholar 

  51. Viollet, B. et al. The AMP-activated protein kinase α2 catalytic subunit controls whole-body insulin sensitivity. J. Clin. Invest. 111, 91–98 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sparks, A.R., Johnson, P.L. & Meyer, M.C. Imaging of abdominal aortic aneurysms. Am. Fam. Physician 65, 1565–1570 (2002).

    PubMed  Google Scholar 

  53. Lukasova, M., Malaval, C., Gille, A., Kero, J. & Offermanns, S. Nicotinic acid inhibits progression of atherosclerosis in mice through its receptor GPR109A expressed by immune cells. J. Clin. Invest. 121, 1163–1173 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Matute-Bello, G. et al. Optimal timing to repopulation of resident alveolar macrophages with donor cells following total body irradiation and bone marrow transplantation in mice. J. Immunol. Methods 292, 25–34 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Xie, Z. et al. Identification of the serine 307 of LKB1 as a novel phosphorylation site essential for its nucleocytoplasmic transport and endothelial cell angiogenesis. Mol. Cell. Biol. 29, 3582–3596 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang, S., Peng, Q., Zhang, J. & Liu, L. Na+/H+ exchanger is required for hyperglycaemia-induced endothelial dysfunction via calcium-dependent calpain. Cardiovasc. Res. 80, 255–262 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Wang, S., Xu, J., Song, P., Viollet, B. & Zou, M.H. In vivo activation of AMP-activated protein kinase attenuates diabetes-enhanced degradation of GTP cyclohydrolase I. Diabetes 58, 1893–1901 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhang, J. et al. Identification of nitric oxide as an endogenous activator of the AMP-activated protein kinase in vascular endothelial cells. J. Biol. Chem. 283, 27452–27461 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful for helpful discussions with J. Du, X.L. Wang and C. Yan. We also thank D. Wang and M. McDaniel for technical support. This work was supported by US National Institutes of Health (NIH) grants (HL079584, HL074399, HL080499, HL089920, HL096032, HL105157 and HL110488 to M.-H.Z.). L.X.'s lab is supported by NIH grants (HL085607 and RR018758). This work was also supported by the National High-tech Research and Development Program of China (No.2012AA02A510) awarded to C.Z. and the National 973 Basic Research Program of China (number 2011CB503906) and the State Program of National Natural Science Foundation of China for Innovative Research Group (number 81021001) awarded to Y.Z. M.-H.Z. is a recipient of the National Established Investigator Award of the American Heart Association.

Author information

Authors and Affiliations

Authors

Contributions

S.W. designed and conducted the experiments, analyzed data and wrote the manuscript. C.Z. and Y.Z. did the clinical experiments. M.Z. and L.X. did bone morrow transplantation. B.L. partially performed the pathological experiments. H.Z. and J.L. generated series mutants. B.V. provided the AMPK-deleted mice. M.-H.Z. conceived of the project, designed the experiments, analyzed data and wrote the manuscript.

Corresponding author

Correspondence to Ming-Hui Zou.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–12 and Supplementary Tables 1–10 (PDF 5097 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, S., Zhang, C., Zhang, M. et al. Activation of AMP-activated protein kinase α2 by nicotine instigates formation of abdominal aortic aneurysms in mice in vivo. Nat Med 18, 902–910 (2012). https://doi.org/10.1038/nm.2711

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2711

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing