Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

MRSA epidemic linked to a quickly spreading colonization and virulence determinant

Abstract

The molecular processes underlying epidemic waves of methicillin-resistant Staphylococcus aureus (MRSA) infection are poorly understood1. Although a major role has been attributed to the acquisition of virulence determinants by horizontal gene transfer2, there are insufficient epidemiological and functional data supporting that concept. We here report the spread of clones containing a previously extremely rare3,4 mobile genetic element–encoded gene, sasX. We demonstrate that sasX has a key role in MRSA colonization and pathogenesis, substantially enhancing nasal colonization, lung disease and abscess formation and promoting mechanisms of immune evasion. Moreover, we observed the recent spread of sasX from sequence type 239 (ST239) to invasive clones belonging to other sequence types. Our study identifies sasX as a quickly spreading crucial determinant of MRSA pathogenic success and a promising target for therapeutic interference. Our results provide proof of principle that horizontal gene transfer of key virulence determinants drives MRSA epidemic waves.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spread of sasX-positive clones in China.
Figure 2: The SasX surface protein facilitates nasal colonization.
Figure 3: SasX promotes bacterial aggregation and mechanisms of immune evasion.
Figure 4: SasX is a key virulence determinant during MRSA skin and lung infection.

Similar content being viewed by others

References

  1. Chambers, H.F. & DeLeo, F.R. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat. Rev. Microbiol. 7, 629–641 (2009).

    Article  CAS  Google Scholar 

  2. Diep, B.A., Carleton, H.A., Chang, R.F., Sensabaugh, G.F. & Perdreau-Remington, F. Roles of 34 virulence genes in the evolution of hospital- and community-associated strains of methicillin-resistant Staphylococcus aureus. J. Infect. Dis. 193, 1495–1503 (2006).

    Article  CAS  Google Scholar 

  3. Holden, M.T. et al. Genome sequence of a recently emerged, highly transmissible, multi-antibiotic- and antiseptic-resistant variant of methicillin-resistant Staphylococcus aureus, sequence type 239 (TW). J. Bacteriol. 192, 888–892 (2010).

    Article  CAS  Google Scholar 

  4. Harris, S.R. et al. Evolution of MRSA during hospital transmission and intercontinental spread. Science 327, 469–474 (2010).

    Article  CAS  Google Scholar 

  5. Lowy, F.D. Antimicrobial resistance: the example of Staphylococcus aureus. J. Clin. Invest. 111, 1265–1273 (2003).

    Article  CAS  Google Scholar 

  6. DeLeo, F.R. & Chambers, H.F. Reemergence of antibiotic-resistant Staphylococcus aureus in the genomics era. J. Clin. Invest. 119, 2464–2474 (2009).

    Article  CAS  Google Scholar 

  7. Klevens, R.M. et al. Invasive methicillin-resistant Staphylococcus aureus infections in the United States. J. Am. Med. Assoc. 298, 1763–1771 (2007).

    Article  CAS  Google Scholar 

  8. Hiramatsu, K., Cui, L., Kuroda, M. & Ito, T. The emergence and evolution of methicillin-resistant Staphylococcus aureus. Trends Microbiol. 9, 486–493 (2001).

    Article  CAS  Google Scholar 

  9. Liu, Y. et al. Molecular evidence for spread of two major methicillin-resistant Staphylococcus aureus clones with a unique geographic distribution in Chinese hospitals. Antimicrob. Agents Chemother. 53, 512–518 (2009).

    Article  CAS  Google Scholar 

  10. Li, Y. et al. Complete genome sequence of Staphylococcus aureus T0131, an ST239-MRSA-SCCmec type III clone isolated in china. J. Bacteriol. 193, 3411–3412 (2011).

    Article  CAS  Google Scholar 

  11. Söderquist, B. et al. Staphylococcus epidermidis surface protein I (SesI): a marker of the invasive capacity of S. epidermidis? J. Med. Microbiol. 58, 1395–1397 (2009).

    Article  Google Scholar 

  12. Aires de Sousa, M. et al. Frequent recovery of a single clonal type of multidrug-resistant Staphylococcus aureus from patients in two hospitals in Taiwan and China. J. Clin. Microbiol. 41, 159–163 (2003).

    Article  CAS  Google Scholar 

  13. Arakere, G. et al. Genotyping of methicillin-resistant Staphylococcus aureus strains from two hospitals in Bangalore, South India. J. Clin. Microbiol. 43, 3198–3202 (2005).

    Article  CAS  Google Scholar 

  14. Ip, M., Lyon, D.J., Chio, F., Enright, M.C. & Cheng, A.F. Characterization of isolates of methicillin-resistant Staphylococcus aureus from Hong Kong by phage typing, pulsed-field gel electrophoresis, and fluorescent amplified-fragment length polymorphism analysis. J. Clin. Microbiol. 41, 4980–4985 (2003).

    Article  CAS  Google Scholar 

  15. Ko, K.S. et al. Distribution of major genotypes among methicillin-resistant Staphylococcus aureus clones in Asian countries. J. Clin. Microbiol. 43, 421–426 (2005).

    Article  Google Scholar 

  16. Foster, T.J. & Hook, M. Surface protein adhesins of Staphylococcus aureus. Trends Microbiol. 6, 484–488 (1998).

    Article  CAS  Google Scholar 

  17. Wertheim, H.F. et al. The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect. Dis. 5, 751–762 (2005).

    Article  Google Scholar 

  18. von Eiff, C., Becker, K., Machka, K., Stammer, H. & Peters, G. Nasal carriage as a source of Staphylococcus aureus bacteremia. Study Group. N. Engl. J. Med. 344, 11–16 (2001).

    Article  CAS  Google Scholar 

  19. Weidenmaier, C. et al. Role of teichoic acids in Staphylococcus aureus nasal colonization, a major risk factor in nosocomial infections. Nat. Med. 10, 243–245 (2004).

    Article  CAS  Google Scholar 

  20. O'Brien, L.M., Walsh, E.J., Massey, R.C., Peacock, S.J. & Foster, T.J. Staphylococcus aureus clumping factor B (ClfB) promotes adherence to human type I cytokeratin 10: implications for nasal colonization. Cell. Microbiol. 4, 759–770 (2002).

    Article  CAS  Google Scholar 

  21. Wertheim, H.F. et al. Key role for clumping factor B in Staphylococcus aureus nasal colonization of humans. PLoS Med. 5, e17 (2008).

    Article  Google Scholar 

  22. Corrigan, R.M., Miajlovic, H. & Foster, T.J. Surface proteins that promote adherence of Staphylococcus aureus to human desquamated nasal epithelial cells. BMC Microbiol. 9, 22 (2009).

    Article  Google Scholar 

  23. Foster, T.J. Immune evasion by staphylococci. Nat. Rev. Microbiol. 3, 948–958 (2005).

    Article  CAS  Google Scholar 

  24. Otto, M. Staphylococcal biofilms. Curr. Top. Microbiol. Immunol. 322, 207–228 (2008).

    CAS  Google Scholar 

  25. Otto, M. Bacterial evasion of antimicrobial peptides by biofilm formation. Curr. Top. Microbiol. Immunol. 306, 251–258 (2006).

    CAS  Google Scholar 

  26. Vuong, C., Saenz, H.L., Gotz, F. & Otto, M. Impact of the agr quorum-sensing system on adherence to polystyrene in Staphylococcus aureus. J. Infect. Dis. 182, 1688–1693 (2000).

    Article  CAS  Google Scholar 

  27. Moran, G.J. et al. Methicillin-resistant S. aureus infections among patients in the emergency department. N. Engl. J. Med. 355, 666–674 (2006).

    Article  CAS  Google Scholar 

  28. Kennedy, A.D. et al. Targeting of α-hemolysin by active or passive immunization decreases severity of USA300 skin infection in a mouse model. J. Infect. Dis. 202, 1050–1058 (2010).

    Article  Google Scholar 

  29. Wang, R. et al. Identification of novel cytolytic peptides as key virulence determinants for community-associated MRSA. Nat. Med. 13, 1510–1514 (2007).

    Article  CAS  Google Scholar 

  30. Koh, S.S. et al. Molecular classification of melanomas and nevi using gene expression microarray signatures and formalin-fixed and paraffin-embedded tissue. Mod. Pathol. 22, 538–546 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from the China National Clinical Key Subject to Y.L., the National Natural Science Foundation of China (grants 30900026 and 81171623) and the Shanghai Pujiang Program (grant 09PJ1402300) to M.L., and the Intramural Research Program of the National Institute of Allergy and Infectious Diseases, US National Institutes of Health (to M.O.).

Author information

Authors and Affiliations

Authors

Contributions

M.L., X.D., A.E.V., D.W., Y.S., Y.T., J.H. and F.Y. conducted experiments. M.L., B.A.D., Y.L. and M.O. planned and supervised experiments. M.O. wrote the paper.

Corresponding authors

Correspondence to Yuan Lu or Michael Otto.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Supplementary Tables 1–3 and Supplementary Methods (PDF 1158 kb)

Supplementary Data

Characteristics of isolates investigated in this study (XLS 195 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, M., Du, X., Villaruz, A. et al. MRSA epidemic linked to a quickly spreading colonization and virulence determinant. Nat Med 18, 816–819 (2012). https://doi.org/10.1038/nm.2692

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2692

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing