Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

Magnetic resonance imaging of glutamate

Abstract

Glutamate, a major neurotransmitter in the brain, shows a pH- and concentration-dependent chemical exchange saturation transfer effect (GluCEST) between its amine group and bulk water, with potential for in vivo imaging by nuclear magnetic resonance. GluCEST asymmetry is observed 3 p.p.m. downfield from bulk water. Middle cerebral artery occlusion in the rat brain resulted in an 100% elevation of GluCEST in the ipsilateral side compared with the contralateral side, predominantly owing to pH changes. In a rat brain tumor model with blood-brain barrier disruption, intravenous glutamate injection resulted in a clear elevation of GluCEST and a similar increase in the proton magnetic resonance spectroscopy signal of glutamate. GluCEST maps from healthy human brain were also obtained. These results demonstrate the feasibility of using GluCEST for mapping relative changes in glutamate concentration, as well as pH, in vivo. Contributions from other brain metabolites to the GluCEST effect are also discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: GluCEST: pH dependence and sensitivity.
Figure 2: GluCEST images at 7T of a phantom consisting of test tubes with different concentrations of glutamate (pH 7.0) immersed in a beaker containing PBS.
Figure 3: GluCEST mapping of healthy and ischemic rat brain.
Figure 4: GluCEST images and 1H MRS of rat brain with a tumor, before and after injection of glutamate.
Figure 5: GluCEST imaging and 1H MRS from a healthy human brain acquired at 7T.

Similar content being viewed by others

References

  1. Petroff, O.A. GABA and glutamate in the human brain. Neuroscientist 8, 562–573 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Harrison, P.J. Metabotropic glutamate receptor agonists for schizophrenia. Br. J. Psychiatry 192, 86–87 (2008).

    Article  PubMed  Google Scholar 

  3. Paul, I.A. & Skolnick, P. Glutamate and depression: clinical and preclinical studies. Ann. NY Acad. Sci. 1003, 250–272 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Chojnacka-Wójcik, E., Klodzinska, A. & Pilc, A. Glutamate receptor ligands as anxiolytics. Curr. Opin. Investig. Drugs 2, 1112–1119 (2001).

    PubMed  Google Scholar 

  5. Rothman, D.L., Petroff, O.A., Behar, K.L. & Mattson, R.H. Localized 1H NMR measurements of gamma-aminobutyric acid in human brain in vivo. Proc. Natl. Acad. Sci. USA 90, 5662–5666 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Ryner, L.N., Sorenson, J.A. & Thomas, M.A. 3D localized 2D NMR spectroscopy on an MRI scanner. J. Magn. Reson. B. 107, 126–137 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Ryner, L.N., Sorenson, J.A. & Thomas, M.A. Localized 2D J-resolved 1H MR spectroscopy: strong coupling effects in vitro and in vivo. Magn. Reson. Imaging 13, 853–869 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Hurd, R. et al. Measurement of brain glutamate using TE-averaged PRESS at 3T. Magn. Reson. Med. 51, 435–440 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Gottschalk, M., Lamalle, L. & Segebarth, C. Short-TE localised 1H MRS of the human brain at 3 T: quantification of the metabolite signals using two approaches to account for macromolecular signal contributions. NMR Biomed. 21, 507–517 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Petroff, O.A., Mattson, R.H. & Rothman, D.L. Proton MRS: GABA and glutamate. Adv. Neurol. 83, 261–271 (2000).

    CAS  PubMed  Google Scholar 

  11. Forsen, S. & Hoffman, R.A. Study of moderately rapid chemical exchange reactions by means of nuclear magnetic double resonance. J. Chem. Phys. 39, 2892–2901 (1963).

    Article  CAS  Google Scholar 

  12. Ward, K.M., Aletras, A.H. & Balaban, R.S. A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST). J. Magn. Reson. 143, 79–87 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Sherry, A.D. & Woods, M. Chemical exchange saturation transfer contrast agents for magnetic resonance imaging. Annu. Rev. Biomed. Eng. 10, 391–411 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Woessner, D.E., Zhang, S., Merritt, M.E. & Sherry, A.D. Numerical solution of the Bloch equations provides insights into the optimum design of PARACEST agents for MRI. Magn. Reson. Med. 53, 790–799 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Zhou, J. & van Zijl, P.C. Chemical exchange saturation transfer imaging and spectroscopy. Prog. Nucl. Magn. Reson. Spectrosc. 48, 109–136 (2006).

    Article  CAS  Google Scholar 

  16. Jones, C.K. et al. Amide proton transfer imaging of human brain tumors at 3T. Magn. Reson. Med. 56, 585–592 (2006).

    Article  PubMed  Google Scholar 

  17. Englander, S.W., Downer, N.W. & Teitelbaum, H. Hydrogen exchange. Annu. Rev. Biochem. 41, 903–924 (1972).

    Article  CAS  PubMed  Google Scholar 

  18. Zhou, J., Payen, J.F., Wilson, D.A., Traystman, R.J. & van Zijl, P.C. Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI. Nat. Med. 9, 1085–1090 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Sun, P.Z., Zhou, J., Sun, W., Huang, J. & van Zijl, P.C. Detection of the ischemic penumbra using pH-weighted MRI. J. Cereb. Blood Flow Metab. 27, 1129–1136 (2007).

    Article  PubMed  Google Scholar 

  20. van Zijl, P.C., Jones, C.K., Ren, J., Malloy, C.R. & Sherry, A.D. MRI detection of glycogen in vivo by using chemical exchange saturation transfer imaging (glycoCEST). Proc. Natl. Acad. Sci. USA 104, 4359–4364 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Ling, W., Regatte, R.R., Navon, G. & Jerschow, A. Assessment of glycosaminoglycan concentration in vivo by chemical exchange-dependent saturation transfer (gagCEST). Proc. Natl. Acad. Sci. USA 105, 2266–2270 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Gilad, A.A. et al. Artificial reporter gene providing MRI contrast based on proton exchange. Nat. Biotechnol. 25, 217–219 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Haris, M., Cai, K., Singh, A., Hariharan, H. & Reddy, R. In vivo mapping of brain myo-inositol. Neuroimage 54, 2079–2085 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. McConnell, H.M. Reaction rates by nuclear magnetic resonance. J. Chem. Phys. 28, 430–431 (1958).

    Article  CAS  Google Scholar 

  25. Chu, W.J. et al. Is the intracellular pH different from normal in the epileptic focus of patients with temporal lobe epilepsy? A 31P NMR study. Neurology 47, 756–760 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Dávalos, A., Shuaib, A. & Wahlgren, N.G. Neurotransmitters and pathophysiology of stroke: evidence for the release of glutamate and other transmitters/mediators in animals and humans. J. Stroke Cerebrovasc. Dis. 9, 2–8 (2000).

    Article  PubMed  Google Scholar 

  27. Kiewert, C., Mdzinarishvili, A., Hartmann, J., Bickel, U. & Klein, J. Metabolic and transmitter changes in core and penumbra after middle cerebral artery occlusion in mice. Brain Res. 1312, 101–107 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Melani, A. et al. Striatal outflow of adenosine, excitatory amino acids, gamma-aminobutyric acid, and taurine in awake freely moving rats after middle cerebral artery occlusion: correlations with neurological deficit and histopathological damage. Stroke 30, 2448–2454 discussion 2455 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Tuor, U.I. et al. Differential progression of magnetization transfer imaging changes depending on severity of cerebral hypoxic-ischemic injury. J. Cereb. Blood Flow Metab. 28, 1613–1623 (2008).

    Article  PubMed  Google Scholar 

  30. McMahon, M.T. et al. New “multicolor” polypeptide diamagnetic chemical exchange saturation transfer (DIACEST) contrast agents for MRI. Magn. Reson. Med. 60, 803–812 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ametamey, S.M. et al. Human PET studies of metabotropic glutamate receptor subtype 5 with 11C–ABP688. J. Nucl. Med. 48, 247–252 (2007).

    CAS  PubMed  Google Scholar 

  32. Sun, P.Z. & Sorensen, A.G. Imaging pH using the chemical exchange saturation transfer (CEST) MRI: Correction of concomitant RF irradiation effects to quantify CEST MRI for chemical exchange rate and pH. Magn. Reson. Med. 60, 390–397 (2008).

    Article  PubMed  Google Scholar 

  33. Michaelis, T., Merboldt, K.D., Bruhn, H., Hanicke, W. & Frahm, J. Absolute concentrations of metabolites in the adult human brain in vivo: quantification of localized proton MR spectra. Radiology 187, 219–227 (1993).

    Article  CAS  PubMed  Google Scholar 

  34. Choi, I.Y., Lee, S.P., Merkle, H. & Shen, J. In vivo detection of gray and white matter differences in GABA concentration in the human brain. Neuroimage 33, 85–93 (2006).

    Article  PubMed  Google Scholar 

  35. Hua, J. et al. Quantitative description of the asymmetry in magnetization transfer effects around the water resonance in the human brain. Magn. Reson. Med. 58, 786–793 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bottomley, P.A. Spatial localization in NMR spectroscopy in vivo. Ann NY Acad. Sci 508, 333–348 (1987).

    Article  CAS  PubMed  Google Scholar 

  37. Liu, G., Gilad, A.A., Bulte, J.W., van Zijl, P.C. & McMahon, M.T. High-throughput screening of chemical exchange saturation transfer MR contrast agents. Contrast Media Mol. Imaging 5, 162–170 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge stimulating discussions with R.N. Bryan, M.D. Schnall, J.D. Glickson and W.S. Englander. We thank W. Liu and S. Pickup for their technical assistance in using the 9.4 T research scanners, W.R.T. Witschey for technical support, P. Waghray for experimental help and D. Reddy, K. Nath and T. Hiraki for help with animal models. This work was carried out at a US National Institutes of Health–supported resource, with funding from P41RR002305.

Author information

Authors and Affiliations

Authors

Contributions

K.C., M.H. and A.S. designed and performed experiments, analyzed data and wrote the manuscript; F.K. did experiments and helped with manuscript editing; J.H.G. helped with rat studies and manuscript editing; J.A.D. advised on neuroimaging aspects and contributed to the manuscript editing; H.H. provided pulse sequence design and technical guidance and contributed to the manuscript writing; R.R. provided conception and overall experimental design and contributed to manuscript writing and editing.

Corresponding author

Correspondence to Ravinder Reddy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods, Supplementary Discussion and Supplementary Table 1 (PDF 574 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, K., Haris, M., Singh, A. et al. Magnetic resonance imaging of glutamate. Nat Med 18, 302–306 (2012). https://doi.org/10.1038/nm.2615

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2615

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing