Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Identification of the Niemann-Pick C1–like 1 cholesterol absorption receptor as a new hepatitis C virus entry factor

Abstract

Hepatitis C virus (HCV) is a leading cause of liver disease worldwide. With 170 million individuals infected and current interferon-based treatment having toxic side effects and marginal efficacy, more effective antivirals are crucially needed1. Although HCV protease inhibitors were just approved by the US Food and Drug Administration (FDA), optimal HCV therapy, analogous to HIV therapy, will probably require a combination of antivirals targeting multiple aspects of the viral lifecycle. Viral entry represents a potential multifaceted target for antiviral intervention; however, to date, FDA-approved inhibitors of HCV cell entry are unavailable. Here we show that the cellular Niemann-Pick C1–like 1 (NPC1L1) cholesterol uptake receptor is an HCV entry factor amendable to therapeutic intervention. Specifically, NPC1L1 expression is necessary for HCV infection, as silencing or antibody-mediated blocking of NPC1L1 impairs cell culture–derived HCV (HCVcc) infection initiation. In addition, the clinically available FDA-approved NPC1L1 antagonist ezetimibe2,3 potently blocks HCV uptake in vitro via a virion cholesterol–dependent step before virion-cell membrane fusion. Moreover, ezetimibe inhibits infection by all major HCV genotypes in vitro and in vivo delays the establishment of HCV genotype 1b infection in mice with human liver grafts. Thus, we have not only identified NPC1L1 as an HCV cell entry factor but also discovered a new antiviral target and potential therapeutic agent.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: NPC1L1 has a role in HCVcc infection.
Figure 2: Ezetimibe-mediated inhibition of NPC1L1 reduces HCV entry at a post-binding, prefusion step.
Figure 3: NPC1L1-mediated HCV cell entry is cholesterol dependent.
Figure 4: Ezetimibe delays the establishment of HCV infection in hepatic xenorepopulated mice.

Similar content being viewed by others

References

  1. Uprichard, S.L. Hepatitis C virus experimental model systems and antiviral drug research. Virol. Sin. 25, 227–245 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gupta, E.K. & Ito, M.K. Ezetimibe: the first in a novel class of selective cholesterol-absorption inhibitors. Heart Dis. 4, 399–409 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Garcia-Calvo, M. et al. The target of ezetimibe is Niemann-Pick C1-like 1 (NPC1L1). Proc. Natl. Acad. Sci. USA 102, 8132–8137 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Pileri, P. et al. Binding of hepatitis C virus to CD81. Science 282, 938–941 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Scarselli, E. et al. The human scavenger receptor class B type I is a novel candidate receptor for the hepatitis C virus. EMBO J. 21, 5017–5025 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Evans, M.J. et al. Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry. Nature 446, 801–805 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Ploss, A. et al. Human occludin is a hepatitis C virus entry factor required for infection of mouse cells. Nature 457, 882–886 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu, S. et al. Tight junction proteins claudin-1 and occludin control hepatitis C virus entry and are downregulated during infection to prevent superinfection. J. Virol. 83, 2011–2014 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Tscherne, D.M. et al. Time- and temperature-dependent activation of hepatitis C virus for low-pH–triggered entry. J. Virol. 80, 1734–1741 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Meertens, L., Bertaux, C. & Dragic, T. Hepatitis C virus entry requires a critical postinternalization step and delivery to early endosomes via clathrin-coated vesicles. J. Virol. 80, 11571–11578 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Huang, H. et al. Hepatitis C virus production by human hepatocytes dependent on assembly and secretion of very low-density lipoproteins. Proc. Natl. Acad. Sci. USA 104, 5848–5853 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Gastaminza, P. et al. Cellular determinants of hepatitis C virus assembly, maturation, degradation, and secretion. J. Virol. 82, 2120–2129 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Aizaki, H. et al. Critical role of virion-associated cholesterol and sphingolipid in hepatitis C virus infection. J. Virol. 82, 5715–5724 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kapadia, S.B., Barth, H., Baumert, T., McKeating, J.A. & Chisari, F.V. Initiation of hepatitis C virus infection is dependent on cholesterol and cooperativity between CD81 and scavenger receptor B type I. J. Virol. 81, 374–383 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Yu, L. The structure and function of Niemann-Pick C1–like 1 protein. Curr. Opin. Lipidol. 19, 263–269 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Altmann, S.W. et al. Niemann-Pick C1 like 1 protein is critical for intestinal cholesterol absorption. Science 303, 1201–1204 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Sané, A.T. et al. Localization and role of NPC1L1 in cholesterol absorption in human intestine. J. Lipid Res. 47, 2112–2120 (2006).

    Article  PubMed  Google Scholar 

  18. Bays, H.E., Neff, D., Tomassini, J.E. & Tershakovec, A.M. Ezetimibe: cholesterol lowering and beyond. Expert Rev. Cardiovasc. Ther. 6, 447–470 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Chang, T.Y. & Chang, C. Ezetimibe blocks internalization of the NPC1L1/cholesterol complex. Cell Metab. 7, 469–471 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Weinglass, A.B. et al. Extracellular loop C of NPC1L1 is important for binding to ezetimibe. Proc. Natl. Acad. Sci. USA 105, 11140–11145 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Gottwein, J.M. et al. Development and characterization of hepatitis C virus genotype 1–7 cell culture systems: role of CD81 and scavenger receptor class B type I and effect of antiviral drugs. Hepatology 49, 364–377 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Grove, J. et al. Scavenger receptor BI and BII expression levels modulate hepatitis C virus infectivity. J. Virol. 81, 3162–3169 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zaitseva, E., Yang, S.T., Melikov, K., Pourmal, S. & Chernomordik, L.V. Dengue virus ensures its fusion in late endosomes using compartment-specific lipids. PLoS Pathog. 6, e1001131 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Coller, K.E. et al. RNA interference and single particle tracking analysis of hepatitis C virus endocytosis. PLoS Pathog. 5, e1000702 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zhang, J.H. et al. The N-terminal domain of NPC1L1 protein binds cholesterol and plays essential roles in cholesterol uptake. J. Biol. Chem. 286, 25088–25097 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yamamoto, M. et al. Structural requirements of virion-associated cholesterol for infectivity, buoyant density and apolipoprotein association of hepatitis C virus. J. Gen. Virol. 92, 2082–2087 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Farquhar, M.J. & McKeating, J.A. Primary hepatocytes as targets for hepatitis C virus replication. J. Viral Hepat. 15, 849–854 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhong, J. et al. Persistent hepatitis C virus infection in vitro: coevolution of virus and host. J. Virol. 80, 11082–11093 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kneteman, N.M. & Toso, C. In vivo study of HCV in mice with chimeric human livers. Methods Mol. Biol. 510, 383–399 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Lupberger, J. et al. EGFR and EphA2 are host factors for hepatitis C virus entry and possible targets for antiviral therapy. Nat. Med. 17, 589–595 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sweeney, M.E. & Johnson, R.R. Ezetimibe: an update on the mechanism of action, pharmacokinetics and recent clinical trials. Expert Opin. Drug Metab. Toxicol. 3, 441–450 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Betters, J.L. & Yu, L. Transporters as drug targets: discovery and development of NPC1L1 inhibitors. Clin. Pharmacol. Ther. 87, 117–121 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Davies, J.P., Scott, C., Oishi, K., Liapis, A. & Ioannou, Y.A. Inactivation of NPC1L1 causes multiple lipid transport defects and protects against diet-induced hypercholesterolemia. J. Biol. Chem. 280, 12710–12720 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Davis, H.R. Jr. et al. Niemann-Pick C1 like 1 (NPC1L1) is the intestinal phytosterol and cholesterol transporter and a key modulator of whole-body cholesterol homeostasis. J. Biol. Chem. 279, 33586–33592 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Matsumura, T. et al. Amphipathic DNA polymers inhibit hepatitis C virus infection by blocking viral entry. Gastroenterology 137, 673–681 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wakita, T. et al. Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nat. Med. 11, 791–796 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sabahi, A. et al. The rate of hepatitis C virus infection initiation in vitro is directly related to particle density. Virology 407, 110–119 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yu, X. & Uprichard, S.L. Cell-based hepatitis C virus infection fluorescence resonance energy transfer (FRET) assay for antiviral compound screening. Curr. Protoc. Microbiol. 18, 17.5.1–17.5.27 (2010).

    Google Scholar 

  39. Ge, L. et al. The cholesterol absorption inhibitor ezetimibe acts by blocking the sterol-induced internalization of NPC1L1. Cell Metab. 7, 508–519 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Tateno, C. et al. Near completely humanized liver in mice shows human-type metabolic responses to drugs. Am. J. Pathol. 165, 901–912 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank T. Wakita (National Institute of Infectious Diseases, Japan) for JFH1-based plasmids, F. Chisari (The Scripps Research Institute) for Huh7 cells, J. Buhk (Copenhagen University Hospital Hepatitis C Program) for JFH-1–based intergenotypic HCV clones, Y. Ioannou (Mount Sinai School of Medicine) for the antibody (Bsn4052) against NPC1L1, D. Burton and M. Law (The Scripps Research Institute) for the antibody (C1) against the HCV glycoprotein E2 and C. Rice (The Rockefeller Institute) for the antibody (E910) against the HCV nonstructural protein NS5A. We would also like to thank P. Corcoran for outstanding technical assistance, H. Dahari for assistance with statistical analyses and T. Layden and S. Cotler for editing the manuscript. We also thank J. Graves of the University of Illinois at Chicago (UIC) Research Resources Center Flow Cytometry laboratory and K. Ma of the UIC Research Resources Center Confocal Microscopy laboratory for technical assistance. This work was supported by the US National Institutes of Health Public Health Service grants R01-AI070827 and R03-AI085226 (S.L.U.), the American Cancer Society Research Scholar Grant RSG-09-076-01 (S.L.U.), the UIC Center for Clinical and Translational Science NIH grant UL1RR029879, the UIC Council to Support Gastrointestinal and Liver Disease and a grant from the Ministry of Education, Culture, Sports, Science and Technology-Japan, Ministry of Health, Labour and Welfare-Japan (K.C.).

Author information

Authors and Affiliations

Authors

Contributions

B.S. made the initial discovery. B.S. and S.L.U. designed the project, analyzed the results and wrote the manuscript. B.S., N.B., D.N.M., S.H., K.A.M. and X.Y. performed experimental work. B.S., S.L.U., M.I. and K.C. designed the hepatic xenorepopulation mouse experiments, and N.H. performed the in vivo studies. W.A.A. was involved in the initial conception of the project and provided valuable expertise.

Corresponding authors

Correspondence to Bruno Sainz Jr or Susan L Uprichard.

Ethics declarations

Competing interests

B.S. and S.L.U. declare a competing financial interest in the form of a patent application to the US Patent Office entitled "Methods for treatment of hepatitis C" (Appl. No. 61/093,549; filed September 2, 2008 and Appl. No. 61/169,899; filed April 16, 2009), which, in part, is based on and related to the findings described within the manuscript.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Figures 1–13 (PDF 3917 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sainz, B., Barretto, N., Martin, D. et al. Identification of the Niemann-Pick C1–like 1 cholesterol absorption receptor as a new hepatitis C virus entry factor. Nat Med 18, 281–285 (2012). https://doi.org/10.1038/nm.2581

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2581

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing