Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PDGF-BB modulates hematopoiesis and tumor angiogenesis by inducing erythropoietin production in stromal cells

Abstract

The platelet-derived growth factor (PDGF) signaling system contributes to tumor angiogenesis and vascular remodeling. Here we show in mouse tumor models that PDGF-BB induces erythropoietin (EPO) mRNA and protein expression by targeting stromal and perivascular cells that express PDGF receptor-β (PDGFR-β). Tumor-derived PDGF-BB promoted tumor growth, angiogenesis and extramedullary hematopoiesis at least in part through modulation of EPO expression. Moreover, adenoviral delivery of PDGF-BB to tumor-free mice increased both EPO production and erythropoiesis, as well as protecting from irradiation-induced anemia. At the molecular level, we show that the PDGF-BB–PDGFR-bβ signaling system activates the EPO promoter, acting in part through transcriptional regulation by the transcription factor Atf3, possibly through its association with two additional transcription factors, c-Jun and Sp1. Our findings suggest that PDGF-BB–induced EPO promotes tumor growth through two mechanisms: first, paracrine stimulation of tumor angiogenesis by direct induction of endothelial cell proliferation, migration, sprouting and tube formation, and second, endocrine stimulation of extramedullary hematopoiesis leading to increased oxygen perfusion and protection against tumor-associated anemia.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PDGF-BB in stromal expansion, angiogenesis and tumor growth.
Figure 2: Extramedullary hematopoiesis and expression of PDGFRs in the stromal compartment.
Figure 3: Elevation of plasma EPO concentrations and transcriptional regulation of EPO expression by PDGF-BB.
Figure 4: In vivo upregulation of Epo mRNA by PDGF-BB, co-localization of EPO protein with PDGFR-β+ structures and maintenance of EPO production in spleen by PDGFR-β.
Figure 5: Anti-tumor and antiangiogenic activity, systemic impact of EPO or PDGFR antagonism and the direct effects of EPO on endothelial cells.
Figure 6: AdPDGF-BB induces EPO expression, extramedullary hematopoiesis and increased hematocrit and improves irradiation-induced anemia.

Similar content being viewed by others

References

  1. Cao, Y. Molecular mechanisms and therapeutic development of angiogenesis inhibitors. Adv. Cancer Res. 100, 113–131 (2008).

    Article  CAS  Google Scholar 

  2. Carmeliet, P. Angiogenesis in life, disease and medicine. Nature 438, 932–936 (2005).

    Article  CAS  Google Scholar 

  3. Folkman, J. Angiogenesis: an organizing principle for drug discovery? Nat. Rev. Drug Discov. 6, 273–286 (2007).

    Article  CAS  Google Scholar 

  4. Kerbel, R.S. Tumor angiogenesis. N. Engl. J. Med. 358, 2039–2049 (2008).

    Article  CAS  Google Scholar 

  5. Abramsson, A., Lindblom, P. & Betsholtz, C. Endothelial and nonendothelial sources of PDGF-B regulate pericyte recruitment and influence vascular pattern formation in tumors. J. Clin. Invest. 112, 1142–1151 (2003).

    Article  CAS  Google Scholar 

  6. Ferrara, N. & Kerbel, R.S. Angiogenesis as a therapeutic target. Nature 438, 967–974 (2005).

    Article  CAS  Google Scholar 

  7. Heldin, C.H., Rubin, K., Pietras, K. & Ostman, A. High interstitial fluid pressure—an obstacle in cancer therapy. Nat. Rev. Cancer 4, 806–813 (2004).

    Article  CAS  Google Scholar 

  8. Soutter, A.D., Nguyen, M., Watanabe, H. & Folkman, J. Basic fibroblast growth factor secreted by an animal tumor is detectable in urine. Cancer Res. 53, 5297–5299 (1993).

    CAS  PubMed  Google Scholar 

  9. Thurston, G. et al. Angiopoietin-1 protects the adult vasculature against plasma leakage. Nat. Med. 6, 460–463 (2000).

    Article  CAS  Google Scholar 

  10. Westermark, B., Nister, M. & Heldin, C.H. Growth factors and oncogenes in human malignant glioma. Neurol. Clin. 3, 785–799 (1985).

    Article  CAS  Google Scholar 

  11. Cao, Y. Positive and negative modulation of angiogenesis by VEGFR1 ligands. Sci. Signal. 2, re1 (2009).

    Article  Google Scholar 

  12. Xue, Y. et al. Anti-VEGF agents confer survival advantages to tumor-bearing mice by improving cancer-associated systemic syndrome. Proc. Natl. Acad. Sci. USA 105, 18513–18518 (2008).

    Article  CAS  Google Scholar 

  13. Nissen, L.J. et al. Angiogenic factors FGF2 and PDGF-BB synergistically promote murine tumor neovascularization and metastasis. J. Clin. Invest. 117, 2766–2777 (2007).

    Article  CAS  Google Scholar 

  14. Bergers, G. & Hanahan, D. Modes of resistance to anti-angiogenic therapy. Nat. Rev. Cancer 8, 592–603 (2008).

    Article  CAS  Google Scholar 

  15. Crawford, Y. et al. PDGF-C mediates the angiogenic and tumorigenic properties of fibroblasts associated with tumors refractory to anti-VEGF treatment. Cancer Cell 15, 21–34 (2009).

    Article  CAS  Google Scholar 

  16. Bhowmick, N.A. & Moses, H.L. Tumor-stroma interactions. Curr. Opin. Genet. Dev. 15, 97–101 (2005).

    Article  CAS  Google Scholar 

  17. Kalluri, R. & Zeisberg, M. Fibroblasts in cancer. Nat. Rev. Cancer 6, 392–401 (2006).

    Article  CAS  Google Scholar 

  18. Pietras, K., Sjoblom, T., Rubin, K., Heldin, C.H. & Ostman, A. PDGF receptors as cancer drug targets. Cancer Cell 3, 439–443 (2003).

    Article  CAS  Google Scholar 

  19. De Palma, M. et al. Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 8, 211–226 (2005).

    Article  CAS  Google Scholar 

  20. Westermark, B. & Heldin, C.H. Structure and function of platelet-derived growth factor. Acta Med. Scand. Suppl. 715, 19–23 (1987).

    CAS  PubMed  Google Scholar 

  21. Cao, R. et al. Angiogenesis stimulated by PDGF-CC, a novel member in the PDGF family, involves activation of PDGFR-αα and -αβ receptors. FASEB J. 16, 1575–1583 (2002).

    Article  CAS  Google Scholar 

  22. Cao, R. et al. Angiogenic synergism, vascular stability and improvement of hind-limb ischemia by a combination of PDGF-BB and FGF-2. Nat. Med. 9, 604–613 (2003).

    Article  CAS  Google Scholar 

  23. Zhang, J. et al. Differential roles of PDGFR-α and PDGFR-β in angiogenesis and vessel stability. FASEB J. 23, 153–163 (2009).

    Article  CAS  Google Scholar 

  24. Lindahl, P., Johansson, B.R., Leveen, P. & Betsholtz, C. Pericyte loss and microaneurysm formation in PDGF-B–deficient mice. Science 277, 242–245 (1997).

    Article  CAS  Google Scholar 

  25. Lindahl, P. et al. Paracrine PDGF-B/PDGF-Rβ signaling controls mesangial cell development in kidney glomeruli. Development 125, 3313–3322 (1998).

    CAS  PubMed  Google Scholar 

  26. Soriano, P. Abnormal kidney development and hematological disorders in PDGF β-receptor mutant mice. Genes Dev. 8, 1888–1896 (1994).

    Article  CAS  Google Scholar 

  27. Moritz, K.M., Lim, G.B. & Wintour, E.M. Developmental regulation of erythropoietin and erythropoiesis. Am. J. Physiol. 273, R1829–R1844 (1997).

    CAS  PubMed  Google Scholar 

  28. Sasaki, R. Pleiotropic functions of erythropoietin. Intern. Med. 42, 142–149 (2003).

    Article  CAS  Google Scholar 

  29. Ribatti, D., Vacca, A., Roccaro, A.M., Crivellato, E. & Presta, M. Erythropoietin as an angiogenic factor. Eur. J. Clin. Invest. 33, 891–896 (2003).

    Article  CAS  Google Scholar 

  30. Baccarani, M. et al. The relevance of extramedullary hemopoiesis to the staging of chronic myeloid leukemia. Boll. Ist. Sieroter. Milan. 57, 257–270 (1978).

    CAS  PubMed  Google Scholar 

  31. Kushner, J.P., Lee, G.R., Wintrobe, M.M. & Cartwright, G.E. Idiopathic refractory sideroblastic anemia: clinical and laboratory investigation of 17 patients and review of the literature. Medicine (Baltimore) 50, 139–159 (1971).

    Article  CAS  Google Scholar 

  32. Saintigny, P. et al. Erythropoietin and erythropoietin receptor coexpression is associated with poor survival in stage I non-small cell lung cancer. Clin. Cancer Res. 13, 4825–4831 (2007).

    Article  CAS  Google Scholar 

  33. Lenox, L.E., Shi, L., Hegde, S. & Paulson, R.F. Extramedullary erythropoiesis in the adult liver requires BMP-4/Smad5-dependent signaling. Exp. Hematol. 37, 549–558 (2009).

    Article  CAS  Google Scholar 

  34. Nakayama, T., Mutsuga, N. & Tosato, G. Effect of fibroblast growth factor 2 on stromal cell-derived factor 1 production by bone marrow stromal cells and hematopoiesis. J. Natl. Cancer Inst. 99, 223–235 (2007).

    Article  CAS  Google Scholar 

  35. Kiryu-Seo, S. et al. Neuronal injury-inducible gene is synergistically regulated by ATF3, c-Jun, and STAT3 through the interaction with Sp1 in damaged neurons. J. Biol. Chem. 283, 6988–6996 (2008).

    Article  CAS  Google Scholar 

  36. Tokunaga, A. et al. PDGF receptor β is a potent regulator of mesenchymal stromal cell function. J. Bone Miner. Res. 23, 1519–1528 (2008).

    Article  CAS  Google Scholar 

  37. Grimm, C. et al. HIF-1–induced erythropoietin in the hypoxic retina protects against light-induced retinal degeneration. Nat. Med. 8, 718–724 (2002).

    Article  CAS  Google Scholar 

  38. Hardee, M.E. et al. Erythropoietin blockade inhibits the induction of tumor angiogenesis and progression. PLoS ONE 2, e549 (2007).

    Article  Google Scholar 

  39. Korpisalo, P. et al. Vascular endothelial growth factor-A and platelet-derived growth factor-B combination gene therapy prolongs angiogenic effects via recruitment of interstitial mononuclear cells and paracrine effects rather than improved pericyte coverage of angiogenic vessels. Circ. Res. 103, 1092–1099 (2008).

    Article  CAS  Google Scholar 

  40. Wang, S., Dale, G.L., Song, P., Viollet, B. & Zou, M.H. AMPKα1 deletion shortens erythrocyte life span in mice: role of oxidative stress. J. Biol. Chem. 285, 19976–19985 (2010).

    Article  CAS  Google Scholar 

  41. Millot, S. et al. Erythropoietin stimulates spleen BMP4-dependent stress erythropoiesis and partially corrects anemia in a mouse model of generalized inflammation. Blood 116, 6072–6081 (2010).

    Article  CAS  Google Scholar 

  42. Harandi, O.F., Hedge, S., Wu, D.C., McKeone, D. & Paulson, R.F. Murine erythroid short-term radioprotection requires a BMP4-dependent, self-renewing population of stress erythroid progenitors. J. Clin. Invest. 120, 4507–4519 (2010).

    Article  CAS  Google Scholar 

  43. Ameri, K. et al. Induction of activating transcription factor 3 by anoxia is independent of p53 and the hypoxic HIF signalling pathway. Oncogene 26, 284–289 (2007).

    Article  CAS  Google Scholar 

  44. Chen, J., Connor, K.M., Aderman, C.M. & Smith, L.E. Erythropoietin deficiency decreases vascular stability in mice. J. Clin. Invest. 118, 526–533 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Bahlmann, F.H. et al. Erythropoietin regulates endothelial progenitor cells. Blood 103, 921–926 (2004).

    Article  CAS  Google Scholar 

  46. Kurimoto, M., Nishijima, M., Hirashima, Y., Endo, S. & Takaku, A. Plasma platelet-derived growth factor-B chain is elevated in patients with extensively large brain tumour. Acta Neurochir. (Wien) 137, 182–187 (1995).

    Article  CAS  Google Scholar 

  47. Leitzel, K. et al. Elevated plasma platelet-derived growth factor B-chain levels in cancer patients. Cancer Res. 51, 4149–4154 (1991).

    CAS  PubMed  Google Scholar 

  48. Yamaguchi, T. et al. Renal cell carcinoma in a patient with Beckwith-Wiedemann syndrome. Pediatr. Radiol. 26, 312–314 (1996).

    Article  CAS  Google Scholar 

  49. Kuhnert, F. et al. Soluble receptor-mediated selective inhibition of VEGFR and PDGFR-β signaling during physiologic and tumor angiogenesis. Proc. Natl. Acad. Sci. USA 105, 10185–10190 (2008).

    Article  CAS  Google Scholar 

  50. Nisancioglu, M.H., Betsholtz, C. & Genove, G. The absence of pericytes does not increase the sensitivity of tumor vasculature to vascular endothelial growth factor-A blockade. Cancer Res. 70, 5109–5115 (2010).

    Article  CAS  Google Scholar 

  51. Kirschner, K.M. & Baltensperger, K. Erythropoietin promotes resistance against the Abl tyrosine kinase inhibitor imatinib (STI571) in K562 human leukemia cells. Mol. Cancer Res. 1, 970–980 (2003).

    CAS  PubMed  Google Scholar 

  52. Xue, Y. et al. Hypoxia-independent angiogenesis in adipose tissues during cold acclimation. Cell Metab. 9, 99–109 (2009).

    Article  CAS  Google Scholar 

  53. Cao, R. et al. PDGF-BB induces intratumoral lymphangiogenesis and promotes lymphatic metastasis. Cancer Cell 6, 333–345 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Nissen and Z. Peng for their technical support. We thank Z. Zhu at ImClone for providing us the antibodies specific to mouse PDGFR-α and PDGFR-β. The MS-5 and S17 cell lines were provided by A. Berardi (Ospedale Bambin Gesu, Italy) and K. Dorshkind (University of California, Los Angeles, California, USA), and the adenoviruses were provided by S. Ylä-Herttuala (University of Kuopio, Kuopio, Finland). This work was supported by the laboratory of Y.C. through research grants from the Swedish Research Council, the Swedish Cancer Foundation, the Karolinska Institute Foundation, the Karolinska Institute distinguished professor award Torsten och Ragnar Söderbergs Stiftelser, a grant from ImClone, the European Union Integrated Project of Metoxia (project number 222741) and the European Research Council advanced grant ANGIOFAT (project number 250021).

Author information

Authors and Affiliations

Authors

Contributions

Y.C. designed the study and wrote the manuscript. Y.X., S.L., K.H., Z.W., L.D.E.J., R.C. and E.-M.H. performed mouse experiments, as well as histological and immunohistological analyses. Y.X. and S.L. measured the plasma EPO concentrations by ELISA, measured the luciferase activity, performed hematological analyses and performed adenoviral analyses. S.L. performed radiation experiments. Y.X., Z.W. and S.L. cultured stromal cells for in vitro assays. Y.Y. performed qRT-PCR, EMSA and ChIP assays. K.H. and Y.Y. performed FACS analyses. K.H. performed colony-forming cell assays and in vitro endothelial cell assays. P.A. performed the western blot analysis. S.L. prepared samples for in situ hybridization, and D.G. performed in situ hybridization assays. Y.X. prepared samples for the microarray assay. Y.X. and O.L. analyzed the microarray data. M.S. provided the PDGFR-β knockout mice for this study.

Corresponding author

Correspondence to Yihai Cao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods, Supplementary Figures 1–7 and Supplementary Table 1 (PDF 1056 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xue, Y., Lim, S., Yang, Y. et al. PDGF-BB modulates hematopoiesis and tumor angiogenesis by inducing erythropoietin production in stromal cells. Nat Med 18, 100–110 (2012). https://doi.org/10.1038/nm.2575

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2575

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer