Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

ROS-induced ATF3 causes susceptibility to secondary infections during sepsis-associated immunosuppression

Abstract

Sepsis, sepsis-induced hyperinflammation and subsequent sepsis-associated immunosuppression (SAIS) are important causes of death. Here we show in humans that the loss of the major reactive oxygen species (ROS) scavenger, glutathione (GSH), during SAIS directly correlates with an increase in the expression of activating transcription factor 3 (ATF3). In endotoxin-stimulated monocytes, ROS stress strongly superinduced NF-E2–related factor 2 (NRF2)–dependent ATF3. In vivo, this ROS-mediated superinduction of ATF3 protected against endotoxic shock by inhibiting innate cytokines, as Atf3−/− mice remained susceptible to endotoxic shock even under conditions of ROS stress. Although it protected against endotoxic shock, this ROS-mediated superinduction of ATF3 caused high susceptibility to bacterial and fungal infections through the suppression of interleukin 6 (IL-6). As a result, Atf3−/− mice were protected against bacterial and fungal infections, even under conditions of ROS stress, whereas Atf3−/−Il6−/− mice were highly susceptible to these infections. Moreover, in a model of SAIS, secondary infections caused considerably less mortality in Atf3−/− mice than in wild-type mice, indicating that ROS-induced ATF3 crucially determines susceptibility to secondary infections during SAIS.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Declining glutathione levels correlate with increasing ATF3 and decreasing IL-6 levels during SAIS.
Figure 2: ROS-mediated superinduction of ATF3 suppresses IL-6.
Figure 3: ROS-mediated superinduction of ATF3 requires NRF2 signaling.
Figure 4: ROS-mediated protection from endotoxin-induced shock is ATF3-dependent.
Figure 5: ROS-induced ATF3 causes high susceptibility to bacterial peritonitis and E. coli sepsis by suppressing IL-6.
Figure 6: ROS-induced ATF3 crucially regulates susceptibility to secondary infections during SAIS.

References

  1. Martin, G.S., Mannino, D.M., Eaton, S. & Moss, M. The epidemiology of sepsis in the United States from 1979 through 2000. N. Engl. J. Med. 348, 1546–1554 (2003).

    Article  Google Scholar 

  2. Riedemann, N.C., Guo, R.F. & Ward, P.A. Novel strategies for the treatment of sepsis. Nat. Med. 9, 517–524 (2003).

    CAS  Article  Google Scholar 

  3. Hotchkiss, R.S. & Opal, S. Immunotherapy for sepsis—a new approach against an ancient foe. N. Engl. J. Med. 363, 87–89 (2010).

    CAS  Article  Google Scholar 

  4. Bone, R.C. et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. 1992. Chest 136, e28 (2009).

    Article  Google Scholar 

  5. Imai, Y. et al. Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell 133, 235–249 (2008).

    CAS  Article  Google Scholar 

  6. Bone, R.C. et al. A controlled clinical trial of high-dose methylprednisolone in the treatment of severe sepsis and septic shock. N. Engl. J. Med. 317, 653–658 (1987).

    CAS  Article  Google Scholar 

  7. Ziegler, E.J. et al. Treatment of gram-negative bacteremia and septic shock with HA-1A human monoclonal antibody against endotoxin. A randomized, double-blind, placebo-controlled trial. The HA-1A Sepsis Study Group. N. Engl. J. Med. 324, 429–436 (1991).

    CAS  Article  Google Scholar 

  8. Fisher, C.J. Jr. et al. Treatment of septic shock with the tumor necrosis factor receptor:Fc fusion protein. The Soluble TNF Receptor Sepsis Study Group. N. Engl. J. Med. 334, 1697–1702 (1996).

    CAS  Article  Google Scholar 

  9. Abraham, E. et al. Efficacy and safety of monoclonal antibody to human tumor necrosis factor alpha in patients with sepsis syndrome. A randomized, controlled, double-blind, multicenter clinical trial. TNF-alpha MAb Sepsis Study Group. J. Am. Med. Assoc. 273, 934–941 (1995).

    CAS  Article  Google Scholar 

  10. Fisher, C.J. Jr. et al. Initial evaluation of human recombinant interleukin-1 receptor antagonist in the treatment of sepsis syndrome: a randomized, open-label, placebo-controlled multicenter trial. Crit. Care Med. 22, 12–21 (1994).

    Article  Google Scholar 

  11. Hotchkiss, R.S. & Karl, I.E. The pathophysiology and treatment of sepsis. N. Engl. J. Med. 348, 138–150 (2003).

    CAS  Article  Google Scholar 

  12. Ward, N.S., Casserly, B. & Ayala, A. The compensatory anti-inflammatory response syndrome (CARS) in critically ill patients. Clin. Chest Med. 29, 617–625 (2008).

    Article  Google Scholar 

  13. Muller Kobold, A.C. et al. Leukocyte activation in sepsis; correlations with disease state and mortality. Intensive Care Med. 26, 883–892 (2000).

    CAS  Article  Google Scholar 

  14. Hotchkiss, R.S. et al. Prevention of lymphocyte cell death in sepsis improves survival in mice. Proc. Natl. Acad. Sci. USA 96, 14541–14546 (1999).

    CAS  Article  Google Scholar 

  15. Osuchowski, M.F., Welch, K., Siddiqui, J. & Remick, D.G. Circulating cytokine/inhibitor profiles reshape the understanding of the SIRS/CARS continuum in sepsis and predict mortality. J. Immunol. 177, 1967–1974 (2006).

    CAS  Article  Google Scholar 

  16. Gogos, C.A., Drosou, E., Bassaris, H.P. & Skoutelis, A. Pro- versus anti-inflammatory cytokine profile in patients with severe sepsis: a marker for prognosis and future therapeutic options. J. Infect. Dis. 181, 176–180 (2000).

    CAS  Article  Google Scholar 

  17. Steinhauser, M.L. et al. IL-10 is a major mediator of sepsis-induced impairment in lung antibacterial host defense. J. Immunol. 162, 392–399 (1999).

    CAS  PubMed  Google Scholar 

  18. Gilchrist, M. et al. Systems biology approaches identify ATF3 as a negative regulator of Toll-like receptor 4. Nature 441, 173–178 (2006).

    CAS  Article  Google Scholar 

  19. Whitmore, M.M. et al. Negative regulation of TLR-signaling pathways by activating transcription factor-3. J. Immunol. 179, 3622–3630 (2007).

    CAS  Article  Google Scholar 

  20. Rosenberger, C.M., Clark, A.E., Treuting, P.M., Johnson, C.D. & Aderem, A. ATF3 regulates MCMV infection in mice by modulating IFN-gamma expression in natural killer cells. Proc. Natl. Acad. Sci. USA 105, 2544–2549 (2008).

    CAS  Article  Google Scholar 

  21. Gilchrist, M. et al. Activating transcription factor 3 is a negative regulator of allergic pulmonary inflammation. J. Exp. Med. 205, 2349–2357 (2008).

    CAS  Article  Google Scholar 

  22. Hai, T., Wolfgang, C.D., Marsee, D.K., Allen, A.E. & Sivaprasad, U. ATF3 and stress responses. Gene Expr. 7, 321–335 (1999).

    CAS  PubMed  Google Scholar 

  23. Biolo, G., Antonione, R. & De Cicco, M. Glutathione metabolism in sepsis. Crit. Care Med. 35, S591–S595 (2007).

    CAS  Article  Google Scholar 

  24. Fläring, U.B., Hebert, C., Wernerman, J., Hammarqvist, F. & Rooyackers, O.E. Circulating and muscle glutathione turnover in human endotoxaemia. Clin. Sci. (Lond.) 117, 313–319 (2009).

    Article  Google Scholar 

  25. Chan, K., Han, X.D. & Kan, Y.W. An important function of Nrf2 in combating oxidative stress: detoxification of acetaminophen. Proc. Natl. Acad. Sci. USA 98, 4611–4616 (2001).

    CAS  Article  Google Scholar 

  26. Kim, K.H., Jeong, J.Y., Surh, Y.J. & Kim, K.W. Expression of stress-response ATF3 is mediated by Nrf2 in astrocytes. Nucleic Acids Res. 38, 48–59 (2010).

    CAS  Article  Google Scholar 

  27. Echtenacher, B., Mannel, D.N. & Hultner, L. Critical protective role of mast cells in a model of acute septic peritonitis. Nature 381, 75–77 (1996).

    CAS  Article  Google Scholar 

  28. Kopf, M. et al. Impaired immune and acute-phase responses in interleukin-6-deficient mice. Nature 368, 339–342 (1994).

    CAS  Article  Google Scholar 

  29. Kneilling, M. et al. Targeted mast cell silencing protects against joint destruction and angiogenesis in experimental arthritis in mice. Arthritis Rheum. 56, 1806–1816 (2007).

    CAS  Article  Google Scholar 

  30. Annane, D., Bellissant, E. & Cavaillon, J.M. Septic shock. Lancet 365, 63–78 (2005).

    CAS  Article  Google Scholar 

  31. Benjamim, C.F., Hogaboam, C.M., Lukacs, N.W. & Kunkel, S.L. Septic mice are susceptible to pulmonary aspergillosis. Am. J. Pathol. 163, 2605–2617 (2003).

    Article  Google Scholar 

  32. Benjamim, C.F., Hogaboam, C.M. & Kunkel, S.L. The chronic consequences of severe sepsis. J. Leukoc. Biol. 75, 408–412 (2004).

    CAS  Article  Google Scholar 

  33. Akram, A. et al. Activating transcription factor 3 confers protection against ventilator induced lung injury. Am. J. Respir. Crit. Care Med. 182, 489–500 (2010).

    CAS  Article  Google Scholar 

  34. Li, H.F., Cheng, C.F., Liao, W.J., Lin, H. & Yang, R.B. ATF3-mediated epigenetic regulation protects against acute kidney injury. J. Am. Soc. Nephrol. 21, 1003–1013 (2010).

    CAS  Article  Google Scholar 

  35. Tsung, A. et al. HMGB1 release induced by liver ischemia involves Toll-like receptor 4 dependent reactive oxygen species production and calcium-mediated signaling. J. Exp. Med. 204, 2913–2923 (2007).

    CAS  Article  Google Scholar 

  36. Gill, R., Tsung, A. & Billiar, T. Linking oxidative stress to inflammation: Toll-like receptors. Free Radic. Biol. Med. 48, 1121–1132 (2010).

    CAS  Article  Google Scholar 

  37. Marino, M.W. et al. Characterization of tumor necrosis factor-deficient mice. Proc. Natl. Acad. Sci. USA 94, 8093–8098 (1997).

    CAS  Article  Google Scholar 

  38. Beutler, B., Milsark, I.W. & Cerami, A.C. Passive immunization against cachectin/tumor necrosis factor protects mice from lethal effect of endotoxin. Science 229, 869–871 (1985).

    CAS  Article  Google Scholar 

  39. Fattori, E. et al. Defective inflammatory response in interleukin 6-deficient mice. J. Exp. Med. 180, 1243–1250 (1994).

    CAS  Article  Google Scholar 

  40. Villa, P., Saccani, A., Sica, A. & Ghezzi, P. Glutathione protects mice from lethal sepsis by limiting inflammation and potentiating host defense. J. Infect. Dis. 185, 1115–1120 (2002).

    CAS  Article  Google Scholar 

  41. Ortolani, O. et al. The effect of glutathione and N-acetylcysteine on lipoperoxidative damage in patients with early septic shock. Am. J. Respir. Crit. Care Med. 161, 1907–1911 (2000).

    CAS  Article  Google Scholar 

  42. Alves-Filho, J.C. et al. Interleukin-33 attenuates sepsis by enhancing neutrophil influx to the site of infection. Nat. Med. 16, 708–712 (2010).

    CAS  Article  Google Scholar 

  43. Döcke, W.D. et al. Monocyte deactivation in septic patients: restoration by IFN-gamma treatment. Nat. Med. 3, 678–681 (1997).

    Article  Google Scholar 

  44. Deng, J.C. et al. Sepsis-induced suppression of lung innate immunity is mediated by IRAK-M. J. Clin. Invest. 116, 2532–2542 (2006).

    CAS  PubMed  Google Scholar 

  45. Hoogerwerf, J.J. et al. Loss of suppression of tumorigenicity 2 (ST2) gene reverses sepsis-induced inhibition of lung host defense in mice. Am. J. Respir. Crit. Care Med. 183, 932–940 (2011).

    CAS  Article  Google Scholar 

  46. Sultzer, B.M. Genetic control of leucocyte responses to endotoxin. Nature 219, 1253–1254 (1968).

    CAS  Article  Google Scholar 

  47. Janeway, C.A. Jr. & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol. 20, 197–216 (2002).

    CAS  Article  Google Scholar 

  48. O'Brien, A.D. et al. Genetic control of susceptibility to Salmonella typhimurium in mice: role of the LPS gene. J. Immunol. 124, 20–24 (1980).

    CAS  PubMed  Google Scholar 

  49. Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088 (1998).

    CAS  Article  Google Scholar 

  50. Levy, M.M. et al. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Intensive Care Med. 29, 530–538 (2003).

    Article  Google Scholar 

  51. Hartman, M.G. et al. Role for activating transcription factor 3 in stress-induced beta-cell apoptosis Mol. Cell. Biol. 24, 5721–5732 (2004).

    CAS  Article  Google Scholar 

  52. Ghoreschi, K. et al. Interleukin-4 therapy of psoriasis induces Th2 responses and improves human autoimmune disease. Nat. Med. 9, 40–46 (2003).

    CAS  Article  Google Scholar 

  53. Biedermann, T. et al. IL-4 instructs TH1 responses and resistance to Leishmania major in susceptible BALB/c mice. Nat. Immunol. 2, 1054–1060 (2001).

    CAS  Article  Google Scholar 

  54. Ghoreschi, K. et al. Fumarates improve psoriasis and multiple sclerosis by inducing type II dendritic cells. J. Exp. Med. 208, 2291–2303 (2011).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank B. Pichler, N. Suttorp, T. Welte, S. Werner and P. Dotto for helpful discussions, and for reviewing the manuscript, and M. Haberbosch and S. Hemberger for technical assistance. S. Werner (Eidgenössische Technische Hochschule Zürich) provided the Nrf2−/− (Nfe2l2tm1Ywk) mice25 with the permission of J.A. Johnson (University of California, San Francisco). This work has been supported by grants from the Sander Stiftung (2005.043.2 and 2005.043.3), Deutsche Krebshilfe (no. 109037), Deutsche Forschungsgemeinschaft (SFB 685 A6 and C1, Bi 696/3-3, Bi 696/5-1), German Federal Ministry of Education and Research (BMBF FKZ 0315079 to K.G., DLR 01GN0970 to M.R.), University of Tuebingen (W.H., f-33654-87; E.G., f-1803-0-0; K.G. and M.R., IZKF-Tuebingen, collaborative research program), European Union FP7-HEALTH-2007-2.4.4-1 200515 (M.R.), The German Dermatologic Society/Arbeitsgemeinschaft Dermatologische Forschung (W.H.), a National Research Foundation of Korea grant that was funded by the Ministry of Education, Science and Technology through the Creative Research Initiative Program (grant R16-2004-001010010,2010) and a World Class University grant (no. R31-2008-000-10103-0).

Author information

Authors and Affiliations

Authors

Contributions

W.H., B.E., E.G., N.V., A.T. and F.W. performed the experiments and analytical methods (quantitative PCR, western blots, flow cytometry, ELISA, CLP and endotoxin model) and analyzed the data. J.-H.P., K.-H.K. and K.-W.K. performed the luciferase and chromatin immunoprecipitation experiments. K.H. and C.K. collected the blood samples of subjects with sepsis. P.H. measured the bacterial and fungal loads. K.F. and M.K. performed arthritis experiments. J.B., K.G. and M.R. developed the glutathione depletion model in vitro and in vivo and the initial proof of concept. W.H., B.E., E.G., F.W., T.B. and M.R. designed the experiments. W.H., B.E., E.G., F.W., J.B., K.G., T.B. and M.R. discussed the manuscript. M.R. developed the concept. W.H., E.G., B.E. and M.R. coordinated and directed the project. T.H. provided the Atf3−/− mice. W.H., T.B. and M.R. interpreted the data and wrote the manuscript.

Corresponding authors

Correspondence to Tilo Biedermann or Martin Röcken.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8, Supplementary Table 1 and Supplementary Methods (PDF 3085 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hoetzenecker, W., Echtenacher, B., Guenova, E. et al. ROS-induced ATF3 causes susceptibility to secondary infections during sepsis-associated immunosuppression. Nat Med 18, 128–134 (2012). https://doi.org/10.1038/nm.2557

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2557

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing