Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The lymphatic vasculature in disease


Blood vessels form a closed circulatory system, whereas lymphatic vessels form a one-way conduit for tissue fluid and leukocytes. In most vertebrates, the main function of lymphatic vessels is to collect excess protein-rich fluid that has extravasated from blood vessels and transport it back into the blood circulation. Lymphatic vessels have an important immune surveillance function, as they import various antigens and activated antigen-presenting cells into the lymph nodes and export immune effector cells and humoral response factors into the blood circulation. Defects in lymphatic function can lead to lymph accumulation in tissues, dampened immune responses, connective tissue and fat accumulation, and tissue swelling known as lymphedema. This review highlights the most recent developments in lymphatic biology and how the lymphatic system contributes to the pathogenesis of various diseases involving immune and inflammatory responses and its role in disseminating tumor cells.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The lymphatic vasculature and molecular mechanisms involved in its development and growth.
Figure 2: Lymphangiogenic growth factor–endothelial receptor interactions and binding sites of blocking antibodies.
Figure 3: A schematic model of lymphatic vessel function in organ transplantation.
Figure 4: Inhibitors of VEGF, VEGF-C, Ang2 and their receptors.
Figure 5: Mechanisms contributing to lymphatic metastasis.


  1. 1

    Schulte-Merker, S., Sabine, A. & Petrova, T.V. Lymphatic vascular morphogenesis in development, physiology, and disease. J. Cell Biol. 193, 607–618 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2

    Pflicke, H. & Sixt, M. Preformed portals facilitate dendritic cell entry into afferent lymphatic vessels. J. Exp. Med. 206, 2925–2935 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Baluk, P. et al. Pathogenesis of persistent lymphatic vessel hyperplasia in chronic airway inflammation. J. Clin. Invest. 115, 247–257 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4

    Dejana, E., Tournier-Lasserve, E. & Weinstein, B.M. The control of vascular integrity by endothelial cell junctions: molecular basis and pathological implications. Dev. Cell 16, 209–221 (2009).

    CAS  Google Scholar 

  5. 5

    Pfeiffer, F. et al. Distinct molecular composition of blood and lymphatic vascular endothelial cell junctions establishes specific functional barriers within the peripheral lymph node. Eur. J. Immunol. 38, 2142–2155 (2008).

    CAS  Google Scholar 

  6. 6

    Tal, O., et al. DC mobilization from the skin requires docking to immobilized CCL21 on lymphatic endothelium and intralymphatic crawling. J. Exp. Med. 208, 2141–2153 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Norrmén, C., Tammela, T., Petrova, T.V. & Alitalo, K. Biological basis of therapeutic lymphangiogenesis. Circulation 123, 1335–1351 (2011).

    Google Scholar 

  8. 8

    Karkkainen, M.J. et al. Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat. Immunol. 5, 74–80 (2004).

    CAS  PubMed  Google Scholar 

  9. 9

    Wigle, J.T. & Oliver, G. Prox1 function is required for the development of the murine lymphatic system. Cell 98, 769–778 (1999).

    CAS  Google Scholar 

  10. 10

    Albrecht, I. & Christofori, G. Molecular mechanisms of lymphangiogenesis in development and cancer. Int. J. Dev. Biol. 55, 483–494 (2011).

    CAS  Google Scholar 

  11. 11

    François, M. et al. Sox18 induces development of the lymphatic vasculature in mice. Nature 456, 643–647 (2008).

    Google Scholar 

  12. 12

    Srinivasan, R.S. et al. The nuclear hormone receptor Coup-TFII is required for the initiation and early maintenance of Prox1 expression in lymphatic endothelial cells. Genes Dev. 24, 696–707 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Xu, Y. et al. Neuropilin-2 mediates VEGF-C–induced lymphatic sprouting together with VEGFR3. J. Cell Biol. 188, 115–130 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Mäkinen, T. et al. PDZ interaction site in ephrinB2 is required for the remodeling of lymphatic vasculature. Genes Dev. 19, 397–410 (2005).

    PubMed  PubMed Central  Google Scholar 

  15. 15

    Niessen, K. et al. The Notch1-Dll4 signaling pathway regulates mouse postnatal lymphatic development. Blood 118, 1989–1997 (2011).

    CAS  Google Scholar 

  16. 16

    Zheng, W. et al. Notch restricts lymphatic vessel sprouting induced by vascular endothelial growth factor. Blood 118, 1154–1162 (2011).

    CAS  Google Scholar 

  17. 17

    Augustin, H.G., Koh, G.Y., Thurston, G. & Alitalo, K. Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nat. Rev. Mol. Cell Biol. 10, 165–177 (2009).

    CAS  PubMed  Google Scholar 

  18. 18

    Hogan, B.M. et al. Ccbe1 is required for embryonic lymphangiogenesis and venous sprouting. Nat. Genet. 41, 396–398 (2009).

    CAS  PubMed  Google Scholar 

  19. 19

    Bos, F.L. et al. CCBE1 Is Essential for Mammalian lymphatic vascular development and enhances the lymphangiogenic effect of vascular endothelial growth factor-C in vivo. Circ. Res. 109, 486–491 (2011).

    CAS  Google Scholar 

  20. 20

    Galvagni, F. et al. Endothelial cell adhesion to the extracellular matrix induces c-Src–dependent VEGFR-3 phosphorylation without the activation of the receptor intrinsic kinase activity. Circ. Res. 106, 1839–1848 (2010).

    CAS  Google Scholar 

  21. 21

    Tammela, T., et al. VEGFR-3 controls tip to stalk conversion at vessel fusion sites by reinforcing Notch signalling. Nat. Cell Biol. 13, 1202–1213 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Uhrin, P. et al. Novel function for blood platelets and podoplanin in developmental separation of blood and lymphatic circulation. Blood 115, 3997–4005 (2010).

    CAS  Google Scholar 

  23. 23

    Bertozzi, C.C. et al. Platelets regulate lymphatic vascular development through CLEC-2-SLP-76 signaling. Blood 116, 661–670 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Proulx, S.T. et al. Quantitative imaging of lymphatic function with liposomal indocyanine green. Cancer Res. 70, 7053–7062 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    Rasmussen, J.C., Tan, I.C., Marshall, M.V., Fife, C.E. & Sevick-Muraca, E.M. Lymphatic imaging in humans with near-infrared fluorescence. Curr. Opin. Biotechnol. 20, 74–82 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Vakoc, B.J. et al. Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging. Nat. Med. 15, 1219–1223 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Song, L., Maslov, K., Shung, K.K. & Wang, L.V. Ultrasound-array–based real-time photoacoustic microscopy of human pulsatile dynamics in vivo. J. Biomed. Opt. 15, 021303 (2010).

    PubMed  PubMed Central  Google Scholar 

  28. 28

    Norrmén, C. et al. FOXC2 controls formation and maturation of lymphatic collecting vessels through cooperation with NFATc1. J. Cell Biol. 185, 439–457 (2009).

    PubMed  PubMed Central  Google Scholar 

  29. 29

    Kanady, J.D., Dellinger, M.T., Munger, S.J., Witte, M.H. & Simon, A.M. Connexin37 and Connexin43 deficiencies in mice disrupt lymphatic valve development and result in lymphatic disorders including lymphedema and chylothorax. Dev. Biol. 354, 253–266 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    Ferrell, R.E. et al. GJC2 missense mutations cause human lymphedema. Am. J. Hum. Genet. 86, 943–948 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Mellor, R.H. et al. Mutations in FOXC2 are strongly associated with primary valve failure in veins of the lower limb. Circulation 115, 1912–1920 (2007).

    CAS  Google Scholar 

  32. 32

    Bazigou, E. et al. Genes regulating lymphangiogenesis control venous valve formation and maintenance in mice. J. Clin. Invest. 121, 2984–2992 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Karkkainen, M.J. et al. A model for gene therapy of human hereditary lymphedema. Proc. Natl. Acad. Sci. USA 98, 12677–12682 (2001).

    CAS  PubMed  Google Scholar 

  34. 34

    Ostergaard, P., et al. Mutations in GATA2 cause primary lymphedema associated with a predisposition to acute myeloid leukemia (Emberger syndrome). Nat. Genet. 43, 929–931 (2011).

    CAS  Google Scholar 

  35. 35

    Stanton, A.W., Modi, S., Mellor, R.H., Levick, J.R. & Mortimer, P.S. Recent advances in breast cancer-related lymphedema of the arm: lymphatic pump failure and predisposing factors. Lymphat. Res. Biol. 7, 29–45 (2009).

    Google Scholar 

  36. 36

    McLaughlin, S.A. et al. Prevalence of lymphedema in women with breast cancer 5 years after sentinel lymph node biopsy or axillary dissection: objective measurements. J. Clin. Oncol. 26, 5213–5219 (2008).

    PubMed  PubMed Central  Google Scholar 

  37. 37

    Tammela, T. et al. Therapeutic differentiation and maturation of lymphatic vessels after lymph node dissection and transplantation. Nat. Med. 13, 1458–1466 (2007).

    CAS  Google Scholar 

  38. 38

    Lähteenvuo, M. et al. Growth factor therapy and autologous lymph node transfer in lymphedema. Circulation 123, 613–620 (2011).

    Google Scholar 

  39. 39

    Cormier, J.N., Rourke, L., Crosby, M., Chang, D. & Armer, J. The surgical treatment of lymphedema: a systematic review of the contemporary literature (2004–2010). Ann. Surg. Oncol. published online, doi:10.1245/s10434-011-2017-4 (24 August 2011).

  40. 40

    Saaristo, A.M. et al. Microvascular breast reconstruction and lymph node transfer for postmastectomy lymphedema patients. Ann. Surg. (in the press).

  41. 41

    Becker, C., Assouad, J., Riquet, M. & Hidden, G. Postmastectomy lymphedema: long-term results following microsurgical lymph node transplantation. Ann. Surg. 243, 313–315 (2006).

    PubMed  PubMed Central  Google Scholar 

  42. 42

    Tammela, T. & Alitalo, K. Lymphangiogenesis: Molecular mechanisms and future promise. Cell 140, 460–476 (2010).

    CAS  Google Scholar 

  43. 43

    Rissanen, T.T. et al. VEGF-D is the strongest angiogenic and lymphangiogenic effector among VEGFs delivered into skeletal muscle via adenoviruses. Circ. Res. 92, 1098–1106 (2003).

    CAS  PubMed  Google Scholar 

  44. 44

    Anisimov, A. et al. Activated forms of VEGF-C and VEGF-D provide improved vascular function in skeletal muscle. Circ. Res. 104, 1302–1312 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Leppänen, V.M. et al. Structural determinants of growth factor binding and specificity by VEGF receptor 2. Proc. Natl. Acad. Sci. USA 107, 2425–2430 (2010).

    Google Scholar 

  46. 46

    Kisko, K. et al. Structural analysis of vascular endothelial growth factor receptor-2/ligand complexes by small-angle X-ray solution scattering. FASEB J. 25, 2980–2986 (2011).

    CAS  Google Scholar 

  47. 47

    Leppänen, V.M. et al. Structural determinants of vascular endothelial growth factor-D receptor binding and specificity. Blood 117, 1507–1515 (2011).

    Google Scholar 

  48. 48

    Vondenhoff, M.F. et al. LTbetaR signaling induces cytokine expression and up-regulates lymphangiogenic factors in lymph node anlagen. J. Immunol. 182, 5439–5445 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Vondenhoff, M.F. et al. Lymph sacs are not required for the initiation of lymph node formation. Development 136, 29–34 (2009).

    CAS  Google Scholar 

  50. 50

    Förster, R., Davalos-Misslitz, A.C. & Rot, A. CCR7 and its ligands: balancing immunity and tolerance. Nat. Rev. Immunol. 8, 362–371 (2008).

    Google Scholar 

  51. 51

    Wick, N. et al. Lymphatic precollectors contain a novel, specialized subpopulation of podoplanin low, CCL27-expressing lymphatic endothelial cells. Am. J. Pathol. 173, 1202–1209 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Pham, T.H. et al. Lymphatic endothelial cell sphingosine kinase activity is required for lymphocyte egress and lymphatic patterning. J. Exp. Med. 207, 17–27 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Karikoski, M. et al. Clever-1/Stabilin-1 regulates lymphocyte migration within lymphatics and leukocyte entrance to sites of inflammation. Eur. J. Immunol. 39, 3477–3487 (2009).

    CAS  Google Scholar 

  54. 54

    Roozendaal, R. et al. Conduits mediate transport of low-molecular-weight antigen to lymph node follicles. Immunity 30, 264–276 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55

    Alvarez, D., Vollmann, E.H. & von Andrian, U.H. Mechanisms and consequences of dendritic cell migration. Immunity 29, 325–342 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Phan, T.G., Green, J.A., Gray, E.E., Xu, Y. & Cyster, J.G. Immune complex relay by subcapsular sinus macrophages and noncognate B cells drives antibody affinity maturation. Nat. Immunol. 10, 786–793 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    Kunder, C.A. et al. Mast cell-derived particles deliver peripheral signals to remote lymph nodes. J. Exp. Med. 206, 2455–2467 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Cohen, J.N. et al. Lymph node–resident lymphatic endothelial cells mediate peripheral tolerance via Aire-independent direct antigen presentation. J. Exp. Med. 207, 681–688 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    Kang, S. et al. Toll-like receptor 4 in lymphatic endothelial cells contributes to LPS-induced lymphangiogenesis by chemotactic recruitment of macrophages. Blood 113, 2605–2613 (2009).

    CAS  Google Scholar 

  60. 60

    Kataru, R.P. et al. Critical role of CD11b+ macrophages and VEGF in inflammatory lymphangiogenesis, antigen clearance and inflammation resolution. Blood 113, 5650–5659 (2009).

    CAS  Google Scholar 

  61. 61

    Huggenberger, R. et al. An important role of lymphatic vessel activation in limiting acute inflammation. Blood 117, 4667–4678 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62

    Angeli, V. et al. B cell–driven lymphangiogenesis in inflamed lymph nodes enhances dendritic cell mobilization. Immunity 24, 203–215 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63

    Kataru, R.P. et al. T lymphocytes negatively regulate lymph node lymphatic vessel formation. Immunity 34, 96–107 (2011).

    CAS  Google Scholar 

  64. 64

    Cueni, L.N. & Detmar, M. The lymphatic system in health and disease. Lymphat. Res. Biol. 6, 109–122 (2008).

    PubMed  PubMed Central  Google Scholar 

  65. 65

    von der Weid, P.Y., Rehal, S. & Ferraz, J.G. Role of the lymphatic system in the pathogenesis of Crohn's disease. Curr. Opin. Gastroenterol. 27, 335–341 (2011).

    CAS  Google Scholar 

  66. 66

    Kerjaschki, D. et al. Lymphatic endothelial progenitor cells contribute to de novo lymphangiogenesis in human renal transplants. Nat. Med. 12, 230–234 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67

    Nykänen, A.I. et al. Targeting lymphatic vessel activation and CCL21 production by vascular endothelial growth factor receptor-3 inhibition has novel immunomodulatory and antiarteriosclerotic effects in cardiac allografts. Circulation 121, 1413–1422 (2010).

    Google Scholar 

  68. 68

    Albuquerque, R.J. et al. Alternatively spliced vascular endothelial growth factor receptor-2 is an essential endogenous inhibitor of lymphatic vessel growth. Nat. Med. 15, 1023–1030 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69

    Yin, N. et al. Targeting lymphangiogenesis after islet transplantation prolongs islet allograft survival. Transplantation 92, 25–30 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70

    Lämmermann, T. et al. Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 453, 51–55 (2008).

    PubMed  Google Scholar 

  71. 71

    Miteva, D.O. et al. Transmural flow modulates cell and fluid transport functions of lymphatic endothelium. Circ. Res. 106, 920–931 (2010).

    CAS  Google Scholar 

  72. 72

    Schumann, K. et al. Immobilized chemokine fields and soluble chemokine gradients cooperatively shape migration patterns of dendritic cells. Immunity 32, 703–713 (2010).

    CAS  Google Scholar 

  73. 73

    Johnson, L.A. & Jackson, D.G. Inflammation-induced secretion of CCL21 in lymphatic endothelium is a key regulator of integrin-mediated dendritic cell transmigration. Int. Immunol. 22, 839–849 (2010).

    CAS  Google Scholar 

  74. 74

    Bao, X. et al. Endothelial heparan sulfate controls chemokine presentation in recruitment of lymphocytes and dendritic cells to lymph nodes. Immunity 33, 817–829 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75

    Podgrabinska, S. et al. Inflamed lymphatic endothelium suppresses dendritic cell maturation and function via Mac-1/ICAM-1–dependent mechanism. J. Immunol. 183, 1767–1779 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76

    Vetrano, S. et al. The lymphatic system controls intestinal inflammation and inflammation-associated colon cancer through the chemokine decoy receptor D6. Gut 59, 197–206 (2010).

    Google Scholar 

  77. 77

    Gräbner, R. et al. Lymphotoxin Β receptor signaling promotes tertiary lymphoid organogenesis in the aorta adventitia of aged Apoe−/− mice. J. Exp. Med. 206, 233–248 (2009).

    PubMed  PubMed Central  Google Scholar 

  78. 78

    van de Pavert, S.A. & Mebius, R.E. New insights into the development of lymphoid tissues. Nat. Rev. Immunol. 10, 664–674 (2010).

    CAS  Google Scholar 

  79. 79

    Muniz, L.R., Pacer, M.E., Lira, S.A. & Furtado, G.C. A critical role for dendritic cells in the formation of lymphatic vessels within tertiary lymphoid structures. J. Immunol. 187, 828–834 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80

    Mounzer, R.H. et al. Lymphotoxin-Α contributes to lymphangiogenesis. Blood 116, 2173–2182 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81

    Harvey, N.L. The link between lymphatic function and adipose biology. Ann. NY Acad. Sci. 1131, 82–88 (2008).

    Google Scholar 

  82. 82

    Dixon, J.B. Lymphatic lipid transport: sewer or subway? Trends Endocrinol. Metab. 21, 480–487 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83

    Harvey, N.L. et al. Lymphatic vascular defects promoted by Prox1 haploinsufficiency cause adult-onset obesity. Nat. Genet. 37, 1072–1081 (2005).

    CAS  Google Scholar 

  84. 84

    Rutkowski, J.M. et al. Dermal collagen and lipid deposition correlate with tissue swelling and hydraulic conductivity in murine primary lymphedema. Am. J. Pathol. 176, 1122–1129 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85

    Szuba, A. et al. Therapeutic lymphangiogenesis with human recombinant VEGF-C. FASEB J. 16, 1985–1987 (2002).

    CAS  PubMed  Google Scholar 

  86. 86

    Libby, P., Ridker, P.M. & Hansson, G.K. Inflammation in atherosclerosis: from pathophysiology to practice. J. Am. Coll. Cardiol. 54, 2129–2138 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87

    Kholová, I. et al. Lymphatic vasculature is increased in heart valves, ischaemic and inflamed hearts and in cholesterol-rich and calcified atherosclerotic lesions. Eur. J. Clin. Invest. 41, 487–497 (2011).

    Google Scholar 

  88. 88

    Nakano, T. et al. Angiogenesis and lymphangiogenesis and expression of lymphangiogenic factors in the atherosclerotic intima of human coronary arteries. Hum. Pathol. 36, 330–340 (2005).

    CAS  Google Scholar 

  89. 89

    Lim, H.Y. et al. Hypercholesterolemic mice exhibit lymphatic vessel dysfunction and degeneration. Am. J. Pathol. 175, 1328–1337 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90

    Machnik, A. et al. Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C–dependent buffering mechanism. Nat. Med. 15, 545–552 (2009).

    CAS  PubMed  Google Scholar 

  91. 91

    Wang, H.W. et al. Kaposi sarcoma herpesvirus-induced cellular reprogramming contributes to the lymphatic endothelial gene expression in Kaposi sarcoma. Nat. Genet. 36, 687–693 (2004).

    CAS  Google Scholar 

  92. 92

    Cheng, F. et al. Virus-induced Notch-MT1-MMP axis leads to lymphatic endothelial-to-mesenchymal transition. Cell Host. Microbe (in the press).

  93. 93

    Liu, R. et al. KSHV-induced notch components render endothelial and mural cell characteristics and cell survival. Blood 115, 887–895 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94

    Zhang, X. et al. Kaposi's sarcoma–associated herpesvirus activation of vascular endothelial growth factor receptor 3 alters endothelial function and enhances infection. J. Biol. Chem. 280, 26216–26224 (2005).

    CAS  Google Scholar 

  95. 95

    Tvorogov, D. et al. Effective suppression of vascular network formation by combination of antibodies blocking VEGFR ligand binding and receptor dimerization. Cancer Cell 18, 630–640 (2010).

    CAS  PubMed  Google Scholar 

  96. 96

    Harari, S., Torre, O. & Moss, J. Lymphangioleiomyomatosis: what do we know and what are we looking for? Eur. Respir. Rev. 20, 34–44 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. 97

    McCormack, F.X. et al. Efficacy and safety of sirolimus in lymphangioleiomyomatosis. N. Engl. J. Med. 364, 1595–1606 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98

    Seyama, K. et al. Vascular endothelial growth factor-D is increased in serum of patients with lymphangioleiomyomatosis. Lymphat. Res. Biol. 4, 143–152 (2006).

    CAS  Google Scholar 

  99. 99

    Fukumura, D., Duda, D.G., Munn, L.L. & Jain, R.K. Tumor microvasculature and microenvironment: novel insights through intravital imaging in pre-clinical models. Microcirculation 17, 206–225 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100

    Mumprecht, V. et al. In vivo imaging of inflammation- and tumor-induced lymph node lymphangiogenesis by immuno-positron emission tomography. Cancer Res. 70, 8842–8851 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. 101

    Leijte, J.A., van der Ploeg, I.M., Valdes Olmos, R.A., Nieweg, O.E. & Horenblas, S. Visualization of tumor blockage and rerouting of lymphatic drainage in penile cancer patients by use of SPECT/CT. J. Nucl. Med. 50, 364–367 (2009).

    Google Scholar 

  102. 102

    Giuliano, A.E., et al. Association of occult metastases in sentinel lymph nodes and bone marrow with survival among women with early-stage invasive breast cancer. J. Am. Med. Assoc. 306, 385–393 (2011).

    CAS  Google Scholar 

  103. 103

    Louis-Sylvestre, C. et al. Axillary treatment in conservative management of operable breast cancer: dissection or radiotherapy? Results of a randomized study with 15 years of follow-up. J. Clin. Oncol. 22, 97–101 (2004).

    Google Scholar 

  104. 104

    Chaffer, C.L. & Weinberg, R.A. A perspective on cancer cell metastasis. Science 331, 1559–1564 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. 105

    Sleeman, J.P., Nazarenko, I. & Thiele, W. Do all roads lead to Rome? Routes to metastasis development. Int. J. Cancer 128, 2511–2526 (2011).

    CAS  Google Scholar 

  106. 106

    Stoecklein, N.H. & Klein, C.A. Genetic disparity between primary tumours, disseminated tumour cells and manifest metastasis. Int. J. Cancer 126, 589–598 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 107

    Campbell, P.J. et al. The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature 467, 1109–1113 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. 108

    Shields, J.D., Kourtis, I.C., Tomei, A.A., Roberts, J.M. & Swartz, M.A. Induction of lymphoidlike stroma and immune escape by tumors that express the chemokine CCL21. Science 328, 749–752 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. 109

    Kim, M. et al. CXCR4 signaling regulates metastasis of chemoresistant melanoma cells by a lymphatic metastatic niche. Cancer Res. 70, 10411–10421 (2010).

    CAS  Google Scholar 

  110. 110

    Madsen, C.D. & Sahai, E. Cancer dissemination—lessons from leukocytes. Dev. Cell 19, 13–26 (2010).

    CAS  PubMed  Google Scholar 

  111. 111

    Contassot, E., Preynat-Seauve, O., French, L. & Huard, B. Lymph node tumor metastases: more susceptible than primary tumors to CD8+ T cell immune destruction. Trends Immunol. 30, 569–573 (2009).

    CAS  Google Scholar 

  112. 112

    Kerjaschki, D. et al. Lipoxygenase mediates invasion of intrametastatic lymphatic vessels and propagates lymph node metastasis of human mammary carcinoma xenografts in mouse. J. Clin. Invest. 121, 2000–2012 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. 113

    Tammela, T. et al. Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature 454, 656–660 (2008).

    CAS  Google Scholar 

  114. 114

    Roberts, N. et al. Inhibition of VEGFR-3 activation with the antagonistic antibody more potently suppresses lymph node and distant metastases than inactivation of VEGFR-2. Cancer Res. 66, 2650–2657 (2006).

    CAS  PubMed  Google Scholar 

  115. 115

    Caunt, M. et al. Blocking neuropilin-2 function inhibits tumor cell metastasis. Cancer Cell 13, 331–342 (2008).

    CAS  Google Scholar 

  116. 116

    Hooper, A.T. et al. Engraftment and reconstitution of hematopoiesis is dependent on VEGFR2-mediated regeneration of sinusoidal endothelial cells. Cell Stem Cell 4, 263–274 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117

    Zbytek, B. et al. Current concepts of metastasis in melanoma. Expert Rev. Dermatol. 3, 569–585 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. 118

    Tammela, T. et al. Photodynamic ablation of lymphatic vessels and intralymphatic cancer cells prevents metastasis. Sci. Transl. Med. 3, 69ra11 (2011).

    Google Scholar 

  119. 119

    Goyal, S., Chauhan, S.K. & Dana, R. Blockade of prolymphangiogenic vascular endothelial growth factor C in dry eye disease. Arch. Ophthalmol. published online, doi:10.1001/archophthalmol.2011.266 (12 September 2011).

    Google Scholar 

  120. 120

    Koch, S., Tugues, S., Li, X., Gualandi, L. & Claesson-Welsh, L. Signal transduction by vascular endothelial growth factor receptors. Biochem. J. 437, 169–183 (2011).

    CAS  PubMed  Google Scholar 

  121. 121

    Saharinen, P. et al. Claudin-like protein 24 interacts with the VEGFR-2 and VEGFR-3 pathways and regulates lymphatic vessel development. Genes Dev. 24, 875–880 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. 122

    Yang, Y., Xie, P., Opatowsky, Y. & Schlessinger, J. Direct contacts between extracellular membrane-proximal domains are required for VEGF receptor activation and cell signaling. Proc. Natl. Acad. Sci. USA 107, 1906–1911 (2010).

    CAS  PubMed  Google Scholar 

  123. 123

    Kendrew, J. et al. An antibody targeted to VEGFR-2 Ig domains 4–7 inhibits VEGFR-2 activation and VEGFR-2–dependent angiogenesis without affecting ligand binding. Mol. Cancer Ther. 10, 770–783 (2011).

    CAS  Google Scholar 

  124. 124

    Koh, Y.J. et al. Double antiangiogenic protein, DAAP, targeting VEGF-A and angiopoietins in tumor angiogenesis, metastasis and vascular leakage. Cancer Cell 18, 171–184 (2010).

    CAS  Google Scholar 

  125. 125

    Hashizume, H. et al. Complementary actions of inhibitors of angiopoietin-2 and VEGF on tumor angiogenesis and growth. Cancer Res. 70, 2213–2223 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. 126

    Brown, J.L. et al. A human monoclonal anti-ANG2 antibody leads to broad antitumor activity in combination with VEGF inhibitors and chemotherapy agents in preclinical models. Mol. Cancer Ther. 9, 145–156 (2010).

    CAS  Google Scholar 

Download references


I am grateful to M. Bry, L. Eklund, S. Jalkanen, D. Kerjaschki, G.Y. Koh, V.-M. Leppänen, T. Mäkinen, A. Nykänen, M. Öhman, P. Ojala, P. Saharinen, M. Swartz and T. Tammela for useful discussions of the topics of this review. The lymph node images in Figure 5a were kindly provided by D. Kerjaschki and by G.Y. Koh, and draft figures were produced by H. Schmidt. The studies in my laboratory are currently supported by the Academy of Finland, the Finnish Cancer Organisations, the Association for International Cancer Research, the Sigrid Juselius Foundation, Seventh Framework Program of the European Union (ERC Advanced Grant), Finnish Foundation for Cardiovascular Research and Biocentrum Finland. I apologize to the many authors whose important work could not be cited because of space restrictions and the focus on the recent developments; older references appear in the many excellent reviews that have been cited.

Author information



Corresponding author

Correspondence to Kari Alitalo.

Ethics declarations

Competing interests

K.A. is chairman of the Scientific Advisory Board of Circadian Technologies Limited. K.A. is also a consultant for Laurantis Pharma Oy.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2 (PDF 268 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Alitalo, K. The lymphatic vasculature in disease. Nat Med 17, 1371–1380 (2011).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing