Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Key contribution of CPEB4-mediated translational control to cancer progression

Abstract

Malignant transformation, invasion and angiogenesis rely on the coordinated reprogramming of gene expression in the cells from which the tumor originated. Although deregulated gene expression has been extensively studied at genomic and epigenetic scales, the contribution of the regulation of mRNA-specific translation to this reprogramming is not well understood. Here we show that cytoplasmic polyadenylation element binding protein 4 (CPEB4), an RNA binding protein that mediates meiotic mRNA cytoplasmic polyadenylation and translation, is overexpressed in pancreatic ductal adenocarcinomas and glioblastomas, where it supports tumor growth, vascularization and invasion. We also show that, in pancreatic tumors, the pro-oncogenic functions of CPEB4 originate in the translational activation of mRNAs that are silenced in normal tissue, including the mRNA of tissue plasminogen activator, a key contributor to pancreatic ductal adenocarcinoma malignancy. Taken together, our results document a key role for post-transcriptional gene regulation in tumor development and describe a detailed mechanism for gene expression reprogramming underlying malignant tumor progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CPEB4 is overexpressed in PDA cell lines and tumor tissues.
Figure 2: In vitro characterization of the effects of CPEB4 knockdown in RWP-1 cells.
Figure 3: Effects of CPEB4 knockdown in vivo on tumorigenicity in nude mice.
Figure 4: Effects of CPEB4 knockdown on proliferation, vessel density and stroma in xenograft tumors.
Figure 5: Illumina Solexa sequencing analysis of mRNAs bound to CPEB4 in RWP-1 cells.
Figure 6: tPA expression is regulated at the translational level by CPEB4 in normal and tumoral pancreatic tissues.

Similar content being viewed by others

References

  1. Hanahan, D. & Weinberg, R.A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Mayr, C., Hemann, M.T. & Bartel, D.P. Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science 315, 1576–1579 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lee, Y.S. & Dutta, A. The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes Dev. 21, 1025–1030 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sonenberg, N. & Hinnebusch, A.G. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136, 731–745 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Silvera, D., Formenti, S.C. & Schneider, R.J. Translational control in cancer. Nat. Rev. Cancer 10, 254–266 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Piqué, M., Lopez, J.M., Foissac, S., Guigo, R. & Mendez, R. A combinatorial code for CPE-mediated translational control. Cell 132, 434–448 (2008).

    Article  PubMed  Google Scholar 

  7. Belloc, E. & Mendez, R. A deadenylation negative feedback mechanism governs meiotic metaphase arrest. Nature 452, 1017–1021 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Eliscovich, C., Peset, I., Vernos, I. & Mendez, R. Spindle-localized CPE-mediated translation controls meiotic chromosome segregation. Nat. Cell Biol. 10, 858–865 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Novoa, I., Gallego, J., Ferreira, P.G. & Mendez, R. Mitotic cell-cycle progression is regulated by CPEB1- and CPEB4-dependent translational control. Nat. Cell Biol. 12, 447–456 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Mendez, R. & Richter, J.D. Translational control by CPEB: a means to the end. Nat. Rev. Mol. Cell Biol. 2, 521–529 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Groppo, R. & Richter, J.D. Translational control from head to tail. Curr. Opin. Cell Biol. 21, 444–451 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Igea, A. & Mendez, R. Meiosis requires a translational positive loop where CPEB1 ensues its replacement by CPEB4. EMBO J. 29, 2182–2193 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Huang, Y.S., Kan, M.C., Lin, C.L. & Richter, J.D. CPEB3 and CPEB4 in neurons: analysis of RNA-binding specificity and translational control of AMPA receptor GluR2 mRNA. EMBO J. 25, 4865–4876 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Groisman, I. et al. Control of cellular senescence by CPEB. Genes Dev. 20, 2701–2712 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Richter, J.D. CPEB: a life in translation. Trends Biochem. Sci. 32, 279–285 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Burns, D.M. & Richter, J.D. CPEB regulation of human cellular senescence, energy metabolism, and p53 mRNA translation. Genes Dev. 22, 3449–3460 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jones, S. et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321, 1801–1806 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Parsons, D.W. et al. An integrated genomic analysis of human glioblastoma multiforme. Science 321, 1807–1812 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Iacobuzio-Donahue, C.A. et al. DPC4 gene status of the primary carcinoma correlates with patterns of failure in patients with pancreatic cancer. J. Clin. Oncol. 27, 1806–1813 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. van Riggelen, J., Yetil, A. & Felsher, D.W. MYC as a regulator of ribosome biogenesis and protein synthesis. Nat. Rev. Cancer 10, 301–309 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Paciucci, R. et al. Isolation of tissue-type plasminogen activator, cathepsin H, and non- specific cross-reacting antigen from SK-PC-1 pancreas cancer cells using subtractive hybridization. FEBS Lett. 385, 72–76 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Paciucci, R., Tora, M., Diaz, V.M. & Real, F.X. The plasminogen activator system in pancreas cancer: role of t-PA in the invasive potential in vitro. Oncogene 16, 625–633 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Díaz, V.M., Planaguma, J., Thomson, T.M., Reventos, J. & Paciucci, R. Tissue plasminogen activator is required for the growth, invasion, and angiogenesis of pancreatic tumor cells. Gastroenterology 122, 806–819 (2002).

    Article  PubMed  Google Scholar 

  24. Ryu, B. et al. Relationships and differentially expressed genes among pancreatic cancers examined by large-scale serial analysis of gene expression. Cancer Res. 62, 819–826 (2002).

    CAS  PubMed  Google Scholar 

  25. Iacobuzio-Donahue, C.A. et al. Highly expressed genes in pancreatic ductal adenocarcinomas: a comprehensive characterization and comparison of the transcription profiles obtained from three major technologies. Cancer Res. 63, 8614–8622 (2003).

    CAS  PubMed  Google Scholar 

  26. Aguilar, S. et al. Tissue plasminogen activator in murine exocrine pancreas cancer: selective expression in ductal tumors and contribution to cancer progression. Am. J. Pathol. 165, 1129–1139 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Missiaglia, E. et al. Analysis of gene expression in cancer cell lines identifies candidate markers for pancreatic tumorigenesis and metastasis. Int. J. Cancer 112, 100–112 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Huarte, J., Belin, D., Vassalli, A., Strickland, S. & Vassalli, J.D. Meiotic maturation of mouse oocytes triggers the translation and polyadenylation of dormant tissue-type plasminogen activator mRNA. Genes Dev. 1, 1201–1211 (1987).

    Article  CAS  PubMed  Google Scholar 

  29. Shin, C.Y., Kundel, M. & Wells, D.G. Rapid, activity-induced increase in tissue plasminogen activator is mediated by metabotropic glutamate receptor-dependent mRNA translation. J. Neurosci. 24, 9425–9433 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gardina, P.J. et al. Alternative splicing and differential gene expression in colon cancer detected by a whole genome exon array. BMC Genomics 7, 325 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Karni, R. et al. The gene encoding the splicing factor SF2/ASF is a proto-oncogene. Nat. Struct. Mol. Biol. 14, 185–193 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Srebrow, A. & Kornblihtt, A.R. The connection between splicing and cancer. J. Cell Sci. 119, 2635–2641 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Karni, R., Hippo, Y., Lowe, S.W. & Krainer, A.R. The splicing-factor oncoprotein SF2/ASF activates mTORC1. Proc. Natl. Acad. Sci. USA 105, 15323–15327 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cooper, C. et al. Increasing the relative expression of endogenous non-coding steroid receptor RNA activator (SRA) in human breast cancer cells using modified oligonucleotides. Nucleic Acids Res. 37, 4518–4531 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pio, R. & Montuenga, L.M. Alternative splicing in lung cancer. J. Thorac. Oncol. 4, 674–678 (2009).

    Article  PubMed  Google Scholar 

  36. Mayr, C. & Bartel, D.P. Widespread shortening of 3′ UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell 138, 673–684 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Ji, Z. & Tian, B. Reprogramming of 3′ untranslated regions of mRNAs by alternative polyadenylation in generation of pluripotent stem cells from different cell types. PLoS ONE 4, e8419 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Blasi, F. & Sidenius, N. The urokinase receptor: focused cell surface proteolysis, cell adhesion and signaling. FEBS Lett. 584, 1923–1930 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Ossowski, L. Plasminogen activator dependent pathways in the dissemination of human tumor cells in the chick embryo. Cell 52, 321–328 (1988).

    Article  CAS  PubMed  Google Scholar 

  40. Aguirre-Ghiso, J.A., Liu, D., Mignatti, A., Kovalski, K. & Ossowski, L. Urokinase receptor and fibronectin regulate the ERK(MAPK) to p38(MAPK) activity ratios that determine carcinoma cell proliferation or dormancy in vivo. Mol. Biol. Cell 12, 863–879 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Smith, H.W. & Marshall, C.J. Regulation of cell signalling by uPAR. Nat. Rev. Mol. Cell Biol. 11, 23–36 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Ulisse, S., Baldini, E., Sorrenti, S. & D'Armiento, M. The urokinase plasminogen activator system: a target for anti-cancer therapy. Curr. Cancer Drug Targets 9, 32–71 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. McMahon, B. & Kwaan, H.C. The plasminogen activator system and cancer. Pathophysiol. Haemost. Thromb. 36, 184–194 (2008).

    Article  PubMed  Google Scholar 

  44. Huarte, J., Belin, D. & Vassalli, J.D. Plasminogen activator in mouse and rat oocytes: induction during meiotic maturation. Cell 43, 551–558 (1985).

    Article  CAS  PubMed  Google Scholar 

  45. Huarte, J. et al. Transient translational silencing by reversible mRNA deadenylation. Cell 69, 1021–1030 (1992).

    Article  CAS  PubMed  Google Scholar 

  46. Gandin, V. et al. Eukaryotic initiation factor 6 is rate-limiting in translation, growth and transformation. Nature 455, 684–688 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ruggero, D. et al. The translation factor eIF-4E promotes tumor formation and cooperates with c-Myc in lymphomagenesis. Nat. Med. 10, 484–486 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Livingstone, M., Atas, E., Meller, A. & Sonenberg, N. Mechanisms governing the control of mRNA translation. Phys. Biol. 7, 021001 (2010).

    Article  PubMed  Google Scholar 

  49. Janic, A., Mendizabal, L., Llamazares, S., Rossell, D. & Gonzalez, C. Ectopic expression of germline genes drives malignant brain tumor growth in Drosophila. Science 330, 1824–1827 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Gaspar, C. et al. Cross-species comparison of human and mouse intestinal polyps reveals conserved mechanisms in adenomatous polyposis coli (APC)-driven tumorigenesis. Am. J. Pathol. 172, 1363–1380 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sääf, A.M. et al. Parallels between global transcriptional programs of polarizing Caco-2 intestinal epithelial cells in vitro and gene expression programs in normal colon and colon cancer. Mol. Biol. Cell 18, 4245–4260 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Read, T.A. et al. Identification of CD15 as a marker for tumor-propagating cells in a mouse model of medulloblastoma. Cancer Cell 15, 135–147 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chen, H.Y. et al. A five-gene signature and clinical outcome in non-small-cell lung cancer. N. Engl. J. Med. 356, 11–20 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Israel, A., Sharan, R., Ruppin, E. & Galun, E. Increased microRNA activity in human cancers. PLoS ONE 4, e6045 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Hansen, C.N. et al. Expression of CPEB, GAPDH and U6snRNA in cervical and ovarian tissue during cancer development. APMIS 117, 53–59 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Roda, O. et al. Galectin-1 is a novel functional receptor for tissue plasminogen activator in pancreatic cancer. Gastroenterology 136, 1379–1390 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Rizzino, A. Behavior of transforming growth factors in serum-free media: an improved assay for transforming growth factors. In Vitro 20, 815–822 (1984).

    Article  CAS  PubMed  Google Scholar 

  58. Huch, M. et al. Urokinase-type plasminogen activator receptor transcriptionally controlled adenoviruses eradicate pancreatic tumors and liver metastasis in mouse models. Neoplasia 11, 518–528 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge F. Gebauer, S. Aznar-Benitah, A. García de Herreros and J. Valcárcel for critical comments on the manuscript and for other valuable contributions. We also thank S. Hahn (Department of Molecular GI-Oncology, University of Bochum, Germany) and M. Buchholz (Department of Gastroenterology, Endocrinology and Metabolism, Philipps-University of Marburg, Marburg, Germany) for providing normal pancreas RNA, O. Casanovas (Translational Research Laboratory, Catalan Institute of Oncology (ICO)–Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Spain) for his help with the T98G nude mice injections, J.R. González-Vallinas (Computational Genomics Group, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona (PRBB)) for assistance with Gene Ontology tools and E. Castillo from the Ultrasequencing Unit (Centre for Genomic Regulation, PRBB), S. Mojal from the Statistics Unit (IMIM, PRBB) and T. Lobato from the Histopathological Unit (IMIM, PRBB) for technical assistance. This work was funded by the research grants Instituto de Salud Carlos–Fondos Europeos de Desarrollo Regional (FEDER) (PI080421) from the Ministerio de Ciencia e Innovación (MICINN) and grants from Fundació La MaratóTV3 (051110), the American Institute for Cancer Research (AICR) (11-0086) and Generalitat de Catalunya (2009SGR1409) to P.N.; grants BFU2008-02373 and Consolider RNAREG CSD2009-00080 from the MICINN and grants from Fundació La MaratóTV3 (051110), AICR (11-0086) and Generalitat de Catalunya (2009SGR1436) to R.M.; grant SAF2007-60860 and Consolider ONCOBIO from the MICINN and a grant from the VI EU Framework Programme MolDiag-PaCa project to F.X.R.; grants Consolider RNAREG CSD2009-00080 and BIO2008-01091 from the MICINN to E.E.; and grants from the Instituto de Salud Carlos III FEDER (RD09/0076/00036) and the Xarxa de Bancs de tumors sponsored by the Pla Director d'Oncologia de Catalunya to the MARBiobanc. P.N. is supported by the Instituto de Salud Carlos III and the Departament de Sanitat de la Generalitat de Catalunya. D.P. holds a Juan de la Cierva grant from the MICINN. N.M.-B. holds a grant from the Fundación Ramón Areces. C.E. was supported by a fellowship from the DURSI (Generalitat de Catalunya) and Fons Social Europeu (ESF).

Author information

Authors and Affiliations

Authors

Contributions

E.O.-Z. performed the experiments shown in Figures 1,2,3,4,5,6 and in Supplementary Figures 1, 3, 4 and 6–10, prepared the figures for the manuscript (except Fig. 5b) and contributed to the experimental design of the study and the preparation of the manuscript. D.P. generated the majority of the plasmids used in the study, designed the primers for the RIP validation experiments, helped with the frog surgery, injection of the oocytes, reporter analyses and in vivo experiments and prepared Figures 5b, 6d and 6f and Supplementary Figure 2. N.M.-B. established the RWP-1 LUC cell line, helped with the in vivo experiments, performed immunohistochemistry analyses of the Capan-1 xenografts and performed all the statistical analyses. D.P. and N.M.-B. prepared Figure 3 and Supplementary Figure 5 and made useful contributions to the experimental design and the interpretation of the data. G.F.-M. generated Capan-1 shCtrl and shCPEB4 cells and contributed to the interpretation of the data. M.I. supplied all the human pancreatic samples used in the study and helped with the histopathological analyses of all the immunohistochemistries performed in samples from both mice and humans. F.A. supplied human glioblastoma samples and helped with the histopathological and immunohistochemistries analyses in tumors from both mice and humans. M.M. helped with the in vivo experiments. C.E. generated the data shown at the bottom of Figure 6b. E.E. performed the analysis of the data generated in the Illumina Solexa sequencing, performed the motif analysis of the 3′ UTR sequences shown in Figure 5a, generated the data shown in Supplementary Figures 6 and 7 and contributed to the preparation of the manuscript. F.X.R. contributed to the study design, data analysis and manuscript preparation. P.N. and R.M. directed the study and wrote the manuscript, which all authors approved.

Corresponding authors

Correspondence to Raúl Méndez or Pilar Navarro.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10, Supplementary Tables 1–4 and Supplementary Methods (PDF 977 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ortiz-Zapater, E., Pineda, D., Martínez-Bosch, N. et al. Key contribution of CPEB4-mediated translational control to cancer progression. Nat Med 18, 83–90 (2012). https://doi.org/10.1038/nm.2540

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2540

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer