Ischemia and reperfusion—from mechanism to translation

Article metrics

Abstract

Ischemia and reperfusion–elicited tissue injury contributes to morbidity and mortality in a wide range of pathologies, including myocardial infarction, ischemic stroke, acute kidney injury, trauma, circulatory arrest, sickle cell disease and sleep apnea. Ischemia-reperfusion injury is also a major challenge during organ transplantation and cardiothoracic, vascular and general surgery. An imbalance in metabolic supply and demand within the ischemic organ results in profound tissue hypoxia and microvascular dysfunction. Subsequent reperfusion further enhances the activation of innate and adaptive immune responses and cell death programs. Recent advances in understanding the molecular and immunological consequences of ischemia and reperfusion may lead to innovative therapeutic strategies for treating patients with ischemia and reperfusion–associated tissue inflammation and organ dysfunction.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1
Figure 2: Injury and resolution during ischemia and reperfusion.
Figure 3: Therapeutic gases for the treatment of ischemia and reperfusion.
Figure 4: Nucleotide and nucleoside signaling during ischemia and reperfusion.
Figure 5: MiRNA pathways implicated in myocardial ischemia and reperfusion.

References

  1. 1

    Yellon, D.M. & Hausenloy, D.J. Myocardial reperfusion injury. N. Engl. J. Med. 357, 1121–1135 (2007).

  2. 2

    Ryan, S., Taylor, C.T. & McNicholas, W.T. Selective activation of inflammatory pathways by intermittent hypoxia in obstructive sleep apnea syndrome. Circulation 112, 2660–2667 (2005).

  3. 3

    Wallace, K.L. & Linden, J. Adenosine A2A receptors induced on iNKT and NK cells reduce pulmonary inflammation and injury in mice with sickle cell disease. Blood 116, 5010–5020 (2010).

  4. 4

    Park, S.W., Kim, M., Brown, K.M., D'Agati, V.D. & Lee, H.T. Paneth cell–derived IL-17A causes multi-organ dysfunction after hepatic ischemia and reperfusion injury. Hepatology 53, 1662–1675 (2011).

  5. 5

    Ogawa, S. et al. Hypoxia modulates the barrier and coagulant function of cultured bovine endothelium. Increased monolayer permeability and induction of procoagulant properties. J. Clin. Invest. 85, 1090–1098 (1990).

  6. 6

    Ogawa, S. et al. Hypoxia-induced increased permeability of endothelial monolayers occurs through lowering of cellular cAMP levels. Am. J. Physiol. 262, C546–C554 (1992).

  7. 7

    Hotchkiss, R.S., Strasser, A., McDunn, J.E. & Swanson, P.E. Cell death. N. Engl. J. Med. 361, 1570–1583 (2009).

  8. 8

    Eltzschig, H.K. & Carmeliet, P. Hypoxia and inflammation. N. Engl. J. Med. 364, 656–665 (2011).

  9. 9

    Carroll, M.C. & Holers, V.M. Innate autoimmunity. Adv. Immunol. 86, 137–157 (2005).

  10. 10

    Chen, G.Y. & Nunez, G. Sterile inflammation: sensing and reacting to damage. Nat. Rev. Immunol. 10, 826–837 (2010).

  11. 11

    Iadecola, C. & Anrather, J. The immunology of stroke: from mechanisms to translation. Nat. Med. 17, 796–808 (2011).

  12. 12

    Iyer, S.S. et al. Necrotic cells trigger a sterile inflammatory response through the Nlrp3 inflammasome. Proc. Natl. Acad. Sci. USA 106, 20388–20393 (2009).

  13. 13

    McDonald, B. et al. Intravascular danger signals guide neutrophils to sites of sterile inflammation. Science 330, 362–366 (2010).

  14. 14

    Grenz, A., Homann, D. & Eltzschig, H.K. Extracellular adenosine—a “safety signal” that dampens hypoxia-induced inflammation during ischemia. Antioxid. Redox Signal. 15, 2221–2234 (2011).

  15. 15

    Petzelbauer, P. et al. The fibrin-derived peptide Bβ15–42 protects the myocardium against ischemia-reperfusion injury. Nat. Med. 11, 298–304 (2005).

  16. 16

    Arbour, N.C. et al. TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat. Genet. 25, 187–191 (2000).

  17. 17

    Powers, K.A. et al. Oxidative stress generated by hemorrhagic shock recruits Toll-like receptor 4 to the plasma membrane in macrophages. J. Exp. Med. 203, 1951–1961 (2006).

  18. 18

    Wu, H. et al. TLR4 activation mediates kidney ischemia/reperfusion injury. J. Clin. Invest. 117, 2847–2859 (2007).

  19. 19

    Krüger, B. et al. Donor Toll-like receptor 4 contributes to ischemia and reperfusion injury following human kidney transplantation. Proc. Natl. Acad. Sci. USA 106, 3390–3395 (2009).

  20. 20

    Cavassani, K.A. et al. TLR3 is an endogenous sensor of tissue necrosis during acute inflammatory events. J. Exp. Med. 205, 2609–2621 (2008).

  21. 21

    Kuhlicke, J., Frick, J.S., Morote-Garcia, J.C., Rosenberger, P. & Eltzschig, H.K. Hypoxia inducible factor (HIF)-1 coordinates induction of Toll-like receptors TLR2 and TLR6 during hypoxia. PLoS ONE 2, e1364 (2007).

  22. 22

    Wolfs, T.G. et al. In vivo expression of Toll-like receptor 2 and 4 by renal epithelial cells: IFN-g and TNF-a mediated up-regulation during inflammation. J. Immunol. 168, 1286–1293 (2002).

  23. 23

    Leemans, J.C. et al. Renal-associated TLR2 mediates ischemia/reperfusion injury in the kidney. J. Clin. Invest. 115, 2894–2903 (2005).

  24. 24

    Kanzler, H., Barrat, F.J., Hessel, E.M. & Coffman, R.L. Therapeutic targeting of innate immunity with Toll-like receptor agonists and antagonists. Nat. Med. 13, 552–559 (2007).

  25. 25

    Fenhammar, J. et al. Toll-like receptor 4 inhibitor TAK-242 attenuates acute kidney injury in endotoxemic sheep. Anesthesiology 114, 1130–1137 (2011).

  26. 26

    Rice, T.W. et al. A randomized, double-blind, placebo-controlled trial of TAK-242 for the treatment of severe sepsis. Crit. Care Med. 38, 1685–1694 (2010).

  27. 27

    Swirski, F.K. et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 325, 612–616 (2009).

  28. 28

    Bamboat, Z.M. et al. Conventional DCs reduce liver ischemia/reperfusion injury in mice via IL-10 secretion. J. Clin. Invest. 120, 559–569 (2010).

  29. 29

    Pacher, P. & Szabo, C. Role of the peroxynitrite-poly(ADP-ribose) polymerase pathway in human disease. Am. J. Pathol. 173, 2–13 (2008).

  30. 30

    Kreisel, D. et al. Bcl3 prevents acute inflammatory lung injury in mice by restraining emergency granulopoiesis. J. Clin. Invest. 121, 265–276 (2011).

  31. 31

    Satpute, S.R. et al. The role for T cell repertoire/antigen-specific interactions in experimental kidney ischemia reperfusion injury. J. Immunol. 183, 984–992 (2009).

  32. 32

    Shen, X. et al. CD4 T cells promote tissue inflammation via CD40 signaling without de novo activation in a murine model of liver ischemia/reperfusion injury. Hepatology 50, 1537–1546 (2009).

  33. 33

    Schroeter, M., Jander, S., Witte, O.W. & Stoll, G. Local immune responses in the rat cerebral cortex after middle cerebral artery occlusion. J. Neuroimmunol. 55, 195–203 (1994).

  34. 34

    Yilmaz, G., Arumugam, T.V., Stokes, K.Y. & Granger, D.N. Role of T lymphocytes and interferon-g in ischemic stroke. Circulation 113, 2105–2112 (2006).

  35. 35

    Yang, Z. et al. Infarct-sparing effect of A2A-adenosine receptor activation is due primarily to its action on lymphocytes. Circulation 111, 2190–2197 (2005).

  36. 36

    Day, Y.J. et al. Renal ischemia-reperfusion injury and adenosine 2A receptor-mediated tissue protection: the role of CD4+ T cells and IFN-g. J. Immunol. 176, 3108–3114 (2006).

  37. 37

    Shichita, T. et al. Pivotal role of cerebral interleukin-17-producing γδ T cells in the delayed phase of ischemic brain injury. Nat. Med. 15, 946–950 (2009).

  38. 38

    Li, G.Z. et al. Expression of interleukin-17 in ischemic brain tissue. Scand. J. Immunol. 62, 481–486 (2005).

  39. 39

    Liesz, A. et al. Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat. Med. 15, 192–199 (2009).

  40. 40

    Nadig, S.N. et al. In vivo prevention of transplant arteriosclerosis by ex vivo-expanded human regulatory T cells. Nat. Med. 16, 809–813 (2010).

  41. 41

    Floess, S. et al. Epigenetic control of the foxp3 locus in regulatory T cells. PLoS Biol. 5, e38 (2007).

  42. 42

    Tao, R. et al. Deacetylase inhibition promotes the generation and function of regulatory T cells. Nat. Med. 13, 1299–1307 (2007).

  43. 43

    Kulik, L. et al. Pathogenic natural antibodies recognizing annexin IV are required to develop intestinal ischemia-reperfusion injury. J. Immunol. 182, 5363–5373 (2009).

  44. 44

    Zhang, M. et al. Identification of the target self-antigens in reperfusion injury. J. Exp. Med. 203, 141–152 (2006).

  45. 45

    Ricklin, D., Hajishengallis, G., Yang, K. & Lambris, J.D. Complement: a key system for immune surveillance and homeostasis. Nat. Immunol. 11, 785–797 (2010).

  46. 46

    Diepenhorst, G.M., van Gulik, T.M. & Hack, C.E. Complement-mediated ischemia-reperfusion injury: lessons learned from animal and clinical studies. Ann. Surg. 249, 889–899 (2009).

  47. 47

    Armstrong, P.W. et al. Pexelizumab for acute ST-elevation myocardial infarction in patients undergoing primary percutaneous coronary intervention: a randomized controlled trial. J. Am. Med. Assoc. 297, 43–51 (2007).

  48. 48

    Shernan, S.K. et al. Impact of pexelizumab, an anti–C5 complement antibody, on total mortality and adverse cardiovascular outcomes in cardiac surgical patients undergoing cardiopulmonary bypass. Ann. Thorac. Surg. 77, 942–949, discussion 949–950 (2004).

  49. 49

    Verrier, E.D. et al. Terminal complement blockade with pexelizumab during coronary artery bypass graft surgery requiring cardiopulmonary bypass: a randomized trial. J. Am. Med. Assoc. 291, 2319–2327 (2004).

  50. 50

    He, S. et al. A complement-dependent balance between hepatic ischemia/reperfusion injury and liver regeneration in mice. J. Clin. Invest. 119, 2304–2316 (2009).

  51. 51

    Moser, M., Nieswandt, B., Ussar, S., Pozgajova, M. & Fässler, R. Kindlin-3 is essential for integrin activation and platelet aggregation. Nat. Med. 14, 325–330 (2008).

  52. 52

    Weissmüller, T. et al. PMNs facilitate translocation of platelets across human and mouse epithelium and together alter fluid homeostasis via epithelial cell-expressed ecto-NTPDases. J. Clin. Invest. 118, 3682–3692 (2008).

  53. 53

    Müller, F. et al. Platelet polyphosphates are proinflammatory and procoagulant mediators in vivo. Cell 139, 1143–1156 (2009).

  54. 54

    Xu, J., Lupu, F. & Esmon, C.T. Inflammation, innate immunity and blood coagulation. Hamostaseologie 30, 5–6, 8–9 (2010).

  55. 55

    Esmon, C.T. Coagulation inhibitors in inflammation. Biochem. Soc. Trans. 33, 401–405 (2005).

  56. 56

    Groger, M. et al. Peptide Bβ15–42 preserves endothelial barrier function in shock. PLoS One 4, e5391 (2009).

  57. 57

    Atar, D. et al. Effect of intravenous FX06 as an adjunct to primary percutaneous coronary intervention for acute ST-segment elevation myocardial infarction results of the F.I.R.E. (efficacy of FX06 in the prevention of myocardial reperfusion injury) trial. J. Am. Coll. Cardiol. 53, 720–729 (2009).

  58. 58

    Elliott, M.R. et al. Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 461, 282–286 (2009).

  59. 59

    Chekeni, F.B. et al. Pannexin 1 channels mediate 'find-me' signal release and membrane permeability during apoptosis. Nature 467, 863–867 (2010).

  60. 60

    Thakar, C.V. et al. Identification of thrombospondin 1 (TSP-1) as a novel mediator of cell injury in kidney ischemia. J. Clin. Invest. 115, 3451–3459 (2005).

  61. 61

    Tang, Z. et al. Survival effect of PDGF-CC rescues neurons from apoptosis in both brain and retina by regulating GSK3b phosphorylation. J. Exp. Med. 207, 867–880 (2010).

  62. 62

    Liang, M.H. & Chuang, D.M. Regulation and function of glycogen synthase kinase-3 isoforms in neuronal survival. J. Biol. Chem. 282, 3904–3917 (2007).

  63. 63

    Cummins, E.P. et al. Prolyl hydroxylase-1 negatively regulates IkB kinase-b, giving insight into hypoxia-induced NFkB activity. Proc. Natl. Acad. Sci. USA 103, 18154–18159 (2006).

  64. 64

    Li, Q., Van Antwerp, D., Mercurio, F., Lee, K.F. & Verma, I.M. Severe liver degeneration in mice lacking the IkappaB kinase 2 gene. Science 284, 321–325 (1999).

  65. 65

    Chen, L.W. et al. The two faces of IKK and NF-κB inhibition: prevention of systemic inflammation but increased local injury following intestinal ischemia-reperfusion. Nat. Med. 9, 575–581 (2003).

  66. 66

    Piot, C. et al. Effect of cyclosporine on reperfusion injury in acute myocardial infarction. N. Engl. J. Med. 359, 473–481 (2008).

  67. 67

    Hausenloy, D.J. & Yellon, D.M. Time to take myocardial reperfusion injury seriously. N. Engl. J. Med. 359, 518–520 (2008).

  68. 68

    Zhang, H. et al. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J. Biol. Chem. 283, 10892–10903 (2008).

  69. 69

    Sala-Mercado, J.A. et al. Profound cardioprotection with chloramphenicol succinate in the swine model of myocardial ischemia-reperfusion injury. Circulation 122, S179–S184 (2010).

  70. 70

    Klausner, J.M. et al. Reperfusion pulmonary edema. J. Am. Med. Assoc. 261, 1030–1035 (1989).

  71. 71

    de Perrot, M., Liu, M., Waddell, T.K. & Keshavjee, S. Ischemia-reperfusion-induced lung injury. Am. J. Respir. Crit. Care Med. 167, 490–511 (2003).

  72. 72

    Eckle, T. et al. A2B adenosine receptor dampens hypoxia-induced vascular leak. Blood 111, 2024–2035 (2008).

  73. 73

    Morote-Garcia, J.C., Rosenberger, P., Kuhlicke, J. & Eltzschig, H.K. HIF-1-dependent repression of adenosine kinase attenuates hypoxia-induced vascular leak. Blood 111, 5571–5580 (2008).

  74. 74

    Thompson, L.F. et al. Crucial role for ecto-5′-nucleotidase (CD73) in vascular leakage during hypoxia. J. Exp. Med. 200, 1395–1405 (2004).

  75. 75

    Rosenberger, P. et al. Hypoxia-inducible factor-dependent induction of netrin-1 dampens inflammation caused by hypoxia. Nat. Immunol. 10, 195–202 (2009).

  76. 76

    Eltzschig, H.K. & Collard, C.D. Vascular ischaemia and reperfusion injury. Br. Med. Bull. 70, 71–86 (2004).

  77. 77

    Hidalgo, A. et al. Heterotypic interactions enabled by polarized neutrophil microdomains mediate thromboinflammatory injury. Nat. Med. 15, 384–391 (2009).

  78. 78

    Yemisci, M. et al. Pericyte contraction induced by oxidative-nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery. Nat. Med. 15, 1031–1037 (2009).

  79. 79

    Eckle, T., Kohler, D., Lehmann, R., El Kasmi, K.C. & Eltzschig, H.K. Hypoxia-inducible factor-1 is central to cardioprotection: a new paradigm for ischemic preconditioning. Circulation 118, 166–175 (2008).

  80. 80

    Eckle, T. et al. Cardioprotection by ecto-5′-nucleotidase (CD73) and A2B adenosine receptors. Circulation 115, 1581–1590 (2007).

  81. 81

    Köhler, D. et al. CD39/ectonucleoside triphosphate diphosphohydrolase 1 provides myocardial protection during cardiac ischemia/reperfusion injury. Circulation 116, 1784–1794 (2007).

  82. 82

    Petrowsky, H. et al. A prospective, randomized, controlled trial comparing intermittent portal triad clamping versus ischemic preconditioning with continuous clamping for major liver resection. Ann. Surg. 244, 921–928, discussion 928–930 (2006).

  83. 83

    Azoulay, D. et al. Effects of 10 minutes of ischemic preconditioning of the cadaveric liver on the graft's preservation and function: the ying and the yang. Ann. Surg. 242, 133–139 (2005).

  84. 84

    Eckle, T. et al. Systematic evaluation of a novel model for cardiac ischemic preconditioning in mice. Am. J. Physiol. Heart Circ. Physiol. 291, H2533–H2540 (2006).

  85. 85

    Grenz, A. et al. Use of a hanging-weight system for isolated renal artery occlusion during ischemic preconditioning in mice. Am. J. Physiol. Renal Physiol. 292, F475–F485 (2007).

  86. 86

    Hart, M.L. et al. Use of a hanging-weight system for liver ischemic preconditioning in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 294, G1431–G1440 (2008).

  87. 87

    Staat, P. et al. Postconditioning the human heart. Circulation 112, 2143–2148 (2005).

  88. 88

    Thibault, H. et al. Long-term benefit of postconditioning. Circulation 117, 1037–1044 (2008).

  89. 89

    Bøtker, H.E. et al. Remote ischaemic conditioning before hospital admission, as a complement to angioplasty, and effect on myocardial salvage in patients with acute myocardial infarction: a randomised trial. Lancet 375, 727–734 (2010).

  90. 90

    Semenza, G.L. Life with oxygen. Science 318, 62–64 (2007).

  91. 91

    Aragonés, J. et al. Deficiency or inhibition of oxygen sensor Phd1 induces hypoxia tolerance by reprogramming basal metabolism. Nat. Genet. 40, 170–180 (2008).

  92. 92

    Hill, P. et al. Inhibition of hypoxia inducible factor hydroxylases protects against renal ischemia-reperfusion injury. J. Am. Soc. Nephrol. 19, 39–46 (2008).

  93. 93

    Bernhardt, W.M. et al. Inhibition of prolyl hydroxylases increases erythropoietin production in ESRD. J. Am. Soc. Nephrol. 21, 2151–2156 (2010).

  94. 94

    Mazzone, M. et al. Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization. Cell 136, 839–851 (2009).

  95. 95

    Brines, M.L. et al. Erythropoietin crosses the blood-brain barrier to protect against experimental brain injury. Proc. Natl. Acad. Sci. USA 97, 10526–10531 (2000).

  96. 96

    Cai, Z. et al. Hearts from rodents exposed to intermittent hypoxia or erythropoietin are protected against ischemia-reperfusion injury. Circulation 108, 79–85 (2003).

  97. 97

    Parsa, C.J. et al. A novel protective effect of erythropoietin in the infarcted heart. J. Clin. Invest. 112, 999–1007 (2003).

  98. 98

    Fantacci, M. et al. Carbamylated erythropoietin ameliorates the metabolic stress induced in vivo by severe chronic hypoxia. Proc. Natl. Acad. Sci. USA 103, 17531–17536 (2006).

  99. 99

    Najjar, S.S. et al. Intravenous erythropoietin in patients with ST-segment elevation myocardial infarction: REVEAL: a randomized controlled trial. J. Am. Med. Assoc. 305, 1863–1872 (2011).

  100. 100

    Chen, C.H. et al. Activation of aldehyde dehydrogenase-2 reduces ischemic damage to the heart. Science 321, 1493–1495 (2008).

  101. 101

    Miller, E.J. et al. Macrophage migration inhibitory factor stimulates AMP-activated protein kinase in the ischaemic heart. Nature 451, 578–582 (2008).

  102. 102

    Qi, D. et al. Cardiac macrophage migration inhibitory factor inhibits JNK pathway activation and injury during ischemia/reperfusion. J. Clin. Invest. 119, 3807–3816 (2009).

  103. 103

    Ohsawa, I. et al. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat. Med. 13, 688–694 (2007).

  104. 104

    Wood, K.C. & Gladwin, M.T. The hydrogen highway to reperfusion therapy. Nat. Med. 13, 673–674 (2007).

  105. 105

    Lundberg, J.O., Weitzberg, E. & Gladwin, M.T. The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat. Rev. Drug Discov. 7, 156–167 (2008).

  106. 106

    Lang, J.D. Jr. et al. Inhaled NO accelerates restoration of liver function in adults following orthotopic liver transplantation. J. Clin. Invest. 117, 2583–2591 (2007).

  107. 107

    Gladwin, M.T. et al. Nitric oxide for inhalation in the acute treatment of sickle cell pain crisis: a randomized controlled trial. J. Am. Med. Assoc. 305, 893–902 (2011).

  108. 108

    Szabó, C. Hydrogen sulphide and its therapeutic potential. Nat. Rev. Drug Discov. 6, 917–935 (2007).

  109. 109

    Elrod, J.W. et al. Hydrogen sulfide attenuates myocardial ischemia-reperfusion injury by preservation of mitochondrial function. Proc. Natl. Acad. Sci. USA 104, 15560–15565 (2007).

  110. 110

    Daniels, I.S. et al. A role of erythrocytes in adenosine monophosphate initiation of hypometabolism in mammals. J. Biol. Chem. 285, 20716–20723 (2010).

  111. 111

    Blackstone, E., Morrison, M. & Roth, M.B. H2S induces a suspended animation-like state in mice. Science 308, 518 (2005).

  112. 112

    Volpato, G.P. et al. Inhaled hydrogen sulfide: a rapidly reversible inhibitor of cardiac and metabolic function in the mouse. Anesthesiology 108, 659–668 (2008).

  113. 113

    Chin, B.Y. et al. Hypoxia-inducible factor 1a stabilization by carbon monoxide results in cytoprotective preconditioning. Proc. Natl. Acad. Sci. USA 104, 5109–5114 (2007).

  114. 114

    Eltzschig, H.K. et al. ATP release from activated neutrophils occurs via connexin 43 and modulates adenosine-dependent endothelial cell function. Circ. Res. 99, 1100–1108 (2006).

  115. 115

    Eltzschig, H.K. et al. Coordinated adenine nucleotide phosphohydrolysis and nucleoside signaling in posthypoxic endothelium: role of ectonucleotidases and adenosine A2B receptors. J. Exp. Med. 198, 783–796 (2003).

  116. 116

    Chen, Y. et al. ATP release guides neutrophil chemotaxis via P2Y2 and A3 receptors. Science 314, 1792–1795 (2006).

  117. 117

    Riegel, A.K. et al. Selective induction of endothelial P2Y6 nucleotide receptor promotes vascular inflammation. Blood 117, 2548–2555 (2011).

  118. 118

    Peng, W. et al. Systemic administration of an antagonist of the ATP-sensitive receptor P2X7 improves recovery after spinal cord injury. Proc. Natl. Acad. Sci. USA 106, 12489–12493 (2009).

  119. 119

    Eltzschig, H.K. Adenosine: an old drug newly discovered. Anesthesiology 111, 904–915 (2009).

  120. 120

    Eltzschig, H.K. et al. Central role of Sp1-regulated CD39 in hypoxia/ischemia protection. Blood 113, 224–232 (2009).

  121. 121

    Eltzschig, H.K. et al. Endogenous adenosine produced during hypoxia attenuates neutrophil accumulation: coordination by extracellular nucleotide metabolism. Blood 104, 3986–3992 (2004).

  122. 122

    Grenz, A. et al. Protective role of ecto-5′-nucleotidase (CD73) in renal ischemia. J. Am. Soc. Nephrol. 18, 833–845 (2007).

  123. 123

    Hart, M.L. et al. Hypoxia-inducible factor-1a-dependent protection from intestinal ischemia/reperfusion injury involves ecto-5′-nucleotidase (CD73) and the A2B adenosine receptor. J. Immunol. 186, 4367–4374 (2011).

  124. 124

    Hart, M.L. et al. Role of extracellular nucleotide phosphohydrolysis in intestinal ischemia-reperfusion injury. FASEB J. 22, 2784–2797 (2008).

  125. 125

    Hart, M.L., Gorzolla, I.C., Schittenhelm, J., Robson, S.C. & Eltzschig, H.K. SP1-dependent induction of CD39 facilitates hepatic ischemic preconditioning. J. Immunol. 184, 4017–4024 (2010).

  126. 126

    Colgan, S.P. & Eltzschig, H.K. Adenosine and hypoxia-inducible factor signaling in intestinal injury and recovery. Annu. Rev. Physiol. doi:10.1146/annurev-physiol-020911–153230 (19 September 2011).

  127. 127

    Ohta, A. & Sitkovsky, M. Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature 414, 916–920 (2001).

  128. 128

    Cronstein, B.N., Daguma, L., Nichols, D., Hutchison, A.J. & Williams, M. The adenosine/neutrophil paradox resolved: human neutrophils possess both A1 and A2 receptors that promote chemotaxis and inhibit O2 generation, respectively. J. Clin. Invest. 85, 1150–1157 (1990).

  129. 129

    Hart, M.L., Jacobi, B., Schittenhelm, J., Henn, M. & Eltzschig, H.K. Cutting edge: A2B adenosine receptor signaling provides potent protection during intestinal ischemia/reperfusion injury. J. Immunol. 182, 3965–3968 (2009).

  130. 130

    Grenz, A. et al. The reno-vascular A2B adenosine receptor protects the kidney from ischemia. PLoS Med. 5, e137 (2008).

  131. 131

    Field, J.J., Nathan, D.G. & Linden, J. Targeting iNKT cells for the treatment of sickle cell disease. Clin. Immunol. 140, 177–183 (2011).

  132. 132

    Gao, Z. et al. Novel short-acting A2A adenosine receptor agonists for coronary vasodilation: inverse relationship between affinity and duration of action of A2A agonists. J. Pharmacol. Exp. Ther. 298, 209–218 (2001).

  133. 133

    Hendel, R.C. et al. Initial clinical experience with regadenoson, a novel selective A2A agonist for pharmacologic stress single-photon emission computed tomography myocardial perfusion imaging. J. Am. Coll. Cardiol. 46, 2069–2075 (2005).

  134. 134

    Thompson, C.A. FDA approves pharmacologic stress agent. Am. J. Health Syst. Pharm. 65, 890 (2008).

  135. 135

    Gladwin, M.T. Adenosine receptor crossroads in sickle cell disease. Nat. Med. 17, 38–40 (2011).

  136. 136

    Zhang, Y. et al. Detrimental effects of adenosine signaling in sickle cell disease. Nat. Med. 17, 79–86 (2011).

  137. 137

    Bonauer, A. et al. MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science 324, 1710–1713 (2009).

  138. 138

    Wang, J.X. et al. miR-499 regulates mitochondrial dynamics by targeting calcineurin and dynamin-related protein-1. Nat. Med. 17, 71–78 (2011).

  139. 139

    Qian, L. et al. miR-24 inhibits apoptosis and represses Bim in mouse cardiomyocytes. J. Exp. Med. 208, 549–560 (2011).

  140. 140

    Lanford, R.E. et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 327, 198–201 (2010).

  141. 141

    Motterlini, R. & Otterbein, L.E. The therapeutic potential of carbon monoxide. Nat. Rev. Drug Discov. 9, 728–743 (2010).

  142. 142

    Gladwin, M.T. & Schechter, A.N. Nitric oxide therapy in sickle cell disease. Semin. Hematol. 38, 333–342 (2001).

  143. 143

    Szabo, C. Hydrogen sulphide and its therapeutic potential. Nat. Rev. Drug Discov. 6, 917–935 (2007).

Download references

Acknowledgements

We thank S.A. Eltzschig for providing artwork during the manuscript preparation. This work is supported by US National Institutes of Health Grants R01-HL0921, R01-DK083385 and R01-HL098294 and a grant from the Crohn's and Colitis Foundation (H.K.E.) and grant number K08HL102267-01 (T.E.).

Author information

Correspondence to Holger K Eltzschig.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Further reading