Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Vascular endothelial growth factor ameliorates the ataxic phenotype in a mouse model of spinocerebellar ataxia type 1

Abstract

Spinocerebellar ataxia type 1 (SCA1) is an adult-onset, dominantly inherited neurodegenerative disease caused by expansion of a glutamine repeat tract in ataxin-1 (ATXN1). Although the precise function of ATXN1 remains elusive, it seems to be involved in transcriptional repression. We find that mutant ATXN1 represses transcription of the neurotrophic and angiogenic factor vascular endothelial growth factor (VEGF). Genetic overexpression or pharmacologic infusion of recombinant VEGF mitigates SCA1 pathogenesis, suggesting a new therapeutic strategy for this disease.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: VEGF is downregulated in Purkinje cells of SCA1 mutant mice.
Figure 2: VEGF overexpression improves motor performance and pathological hallmarks in SCA1 mice.

References

  1. 1

    Lin, X., Antalffy, B., Kang, D., Orr, H.T. & Zoghbi, H.Y. Nat. Neurosci. 3, 157–163 (2000).

    CAS  Article  PubMed  Google Scholar 

  2. 2

    Serra, H.G. et al. Hum. Mol. Genet. 13, 2535–2543 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3

    Gatchel, J.R. et al. Proc. Natl. Acad. Sci. USA 105, 1291–1296 (2008).

    CAS  Article  PubMed  Google Scholar 

  4. 4

    Orr, H.T. & Zoghbi, H.Y. Annu. Rev. Neurosci. 30, 575–621 (2007).

    CAS  Article  PubMed  Google Scholar 

  5. 5

    Tsai, C.C. et al. Proc. Natl. Acad. Sci. USA 101, 4047–4052 (2004).

    CAS  Article  PubMed  Google Scholar 

  6. 6

    Watase, K. et al. Neuron 34, 905–919 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7

    Oosthuyse, B. et al. Nat. Genet. 28, 131–138 (2001).

    CAS  Article  PubMed  Google Scholar 

  8. 8

    Lambrechts, D. & Carmeliet, P. Biochim. Biophys. Acta 1762, 1109–1121 (2006).

    CAS  Article  PubMed  Google Scholar 

  9. 9

    Sopher, B.L. et al. Neuron 41, 687–699 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10

    Ruiz de Almodovar, C. et al. J. Neurosci. 30, 15052–15066 (2010).

    CAS  Article  PubMed  Google Scholar 

  11. 11

    Acker, T., Beck, H. & Plate, K.H. Mech. Dev. 108, 45–57 (2001).

    CAS  Article  PubMed  Google Scholar 

  12. 12

    Burright, E.N. et al. Cell 82, 937–948 (1995).

    CAS  Article  PubMed  Google Scholar 

  13. 13

    Ramanathan, M., Pinhal-Enfield, G., Hao, I. & Leibovich, S.J. Mol. Biol. Cell 18, 14–23 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14

    Fernandez-Funez, P. et al. Nature 408, 101–106 (2000).

    CAS  Article  PubMed  Google Scholar 

  15. 15

    Chen, H.K. et al. Cell 113, 457–468 (2003).

    CAS  Article  Google Scholar 

  16. 16

    Wang, Y. et al. Brain 128, 52–63 (2005).

    Article  PubMed  Google Scholar 

  17. 17

    Oz, G. et al. Mov. Disord. 25, 1253–1261 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18

    Lim, J. et al. Cell 125, 801–814 (2006).

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank H. Zoghbi (Baylor College of Medicine) and H. Orr (University of Minnesota) for generously providing ATXN1 constructs and the SCA1 mouse models, and S. Leibovich (University of Medicine and Dentistry of New Jersey) and P. D'Amore (Harvard Medical School) for VEGF luciferase reporter constructs. We also thank K. Gobeske for assistance with the intracerebroventricular delivery methods, A. Ma for help with pathological analyses and V. Brandt for editorial assistance. This work was funded by US National Institutes of Health grants K02 NS051340, R21 NS060080 and R01 NS062051 (P.O.); a US National Organization for Rare Disorders grant (P.O.), a US Brain Research Foundation Grant (P.O.) and a US National Ataxia Foundation grant (P.O.). M.C. received funding from the US National Institutes of Health training grant T32. The authors wish to dedicate this manuscript to fellow scientist T. Spann, who is currently fighting amyotrophic lateral sclerosis.

Author information

Affiliations

Authors

Contributions

P.O., A.R.K. and M.C. conceived of the study and designed the experiments. M.C. and J.M.P. conducted and analyzed the experiments. H.H.M. provided and characterized the VEGF-transgenic mice. P.O., M.C. and A.R.K. wrote the paper, and J.M.P. helped with revising the manuscript.

Corresponding author

Correspondence to Puneet Opal.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Methods (PDF 800 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cvetanovic, M., Patel, J., Marti, H. et al. Vascular endothelial growth factor ameliorates the ataxic phenotype in a mouse model of spinocerebellar ataxia type 1. Nat Med 17, 1445–1447 (2011). https://doi.org/10.1038/nm.2494

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing