Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Epidermal growth factor receptor promotes glomerular injury and renal failure in rapidly progressive crescentic glomerulonephritis

An Erratum to this article was published on 07 November 2011

This article has been updated

Abstract

Rapidly progressive glomerulonephritis (RPGN) is a life-threatening clinical syndrome and a morphological manifestation of severe glomerular injury that is marked by a proliferative histological pattern ('crescents') with accumulation of T cells and macrophages and proliferation of intrinsic glomerular cells. We show de novo induction of heparin-binding epidermal growth factor–like growth factor (HB-EGF) in intrinsic glomerular epithelial cells (podocytes) from both mice and humans with RPGN. HB-EGF induction increases phosphorylation of the epidermal growth factor receptor (EGFR, also known as ErbB1) in mice with RPGN. In HB-EGF–deficient mice, EGFR activation in glomeruli is absent and the course of RPGN is improved. Autocrine HB-EGF induces a phenotypic switch in podocytes in vitro. Conditional deletion of the Egfr gene from podocytes of mice alleviates the severity of RPGN. Likewise, pharmacological blockade of EGFR also improves the course of RPGN, even when started 4 d after the induction of experimental RPGN. This suggests that targeting the HB-EGF–EGFR pathway could also be beneficial in treatment of human RPGN.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Induction of renal HB-EGF synthesis leads to glomerular activation of EGFR during RPGN.
Figure 2: HB-EGF induces a migratory phenotype in podocytes in vitro.
Figure 3: Deletion of Hbegf gene prevents fatal renal destruction.
Figure 4: Selective deletion of Egfr from podocytes protects from RPGN.
Figure 5: Delayed EGFR tyrosine kinase inhibition stops development of crescentic RPGN.
Figure 6: HB-EGF expression is induced in human crescentic glomerulonephritis.

Similar content being viewed by others

Change history

  • 07 November 2011

     In the version of this article initially published, the affiliations of the author Nathalie Sabaa were misidentified as affiliations 3 and 4. Her correct affiliations are 6 and 7. The error has been corrected in the HTML and PDF versions of the article.

References

  1. Jennette, J.C. & Thomas, D.B. Crescentic glomerulonephritis. Nephrol. Dial. Transplant. 16 (suppl. 6), 80–82 (2001).

    Article  Google Scholar 

  2. Feng, L. et al. Heparin-binding EGF-like growth factor contributes to reduced glomerular filtration rate during glomerulonephritis in rats. J. Clin. Invest. 105, 341–350 (2000).

    Article  CAS  Google Scholar 

  3. Yoshizumi, M. et al. Tumor necrosis factor increases transcription of the heparin-binding epidermal growth factor-like growth factor gene in vascular endothelial cells. J. Biol. Chem. 267, 9467–9469 (1992).

    CAS  PubMed  Google Scholar 

  4. Kume, N. & Gimbrone, M.A. Jr. Lysophosphatidylcholine transcriptionally induces growth factor gene expression in cultured human endothelial cells. J. Clin. Invest. 93, 907–911 (1994).

    Article  CAS  Google Scholar 

  5. Marikovsky, M. et al. Appearance of heparin-binding EGF-like growth factor in wound fluid as a response to injury. Proc. Natl. Acad. Sci. USA 90, 3889–3893 (1993).

    Article  CAS  Google Scholar 

  6. Higashiyama, S., Abraham, J.A., Miller, J., Fiddes, J.C. & Klagsbrun, M. A heparin-binding growth factor secreted by macrophage-like cells that is related to EGF. Science 251, 936–939 (1991).

    Article  CAS  Google Scholar 

  7. Blotnick, S., Peoples, G.E., Freeman, M.R., Eberlein, T.J. & Klagsbrun, M. T lymphocytes synthesize and export heparin-binding epidermal growth factor-like growth factor and basic fibroblast growth factor, mitogens for vascular cells and fibroblasts: differential production and release by CD4+ and CD8+ T cells. Proc. Natl. Acad. Sci. USA 91, 2890–2894 (1994).

    Article  CAS  Google Scholar 

  8. Neale, T.J., Tipping, P.G., Carson, S.D. & Holdsworth, S.R. Participation of cell-mediated immunity in deposition of fibrin in glomerulonephritis. Lancet 2, 421–424 (1988).

    Article  CAS  Google Scholar 

  9. Tipping, P.G. & Holdsworth, S.R. T cells in glomerulonephritis. Springer Semin. Immunopathol. 24, 377–393 (2003).

    Article  Google Scholar 

  10. Segerer, S. et al. Expression of the chemokine monocyte chemoattractant protein-1 and its receptor chemokine receptor 2 in human crescentic glomerulonephritis. J. Am. Soc. Nephrol. 11, 2231–2242 (2000).

    CAS  PubMed  Google Scholar 

  11. Lloyd, C.M. et al. RANTES and monocyte chemoattractant protein-1 (MCP-1) play an important role in the inflammatory phase of crescentic nephritis, but only MCP-1 is involved in crescent formation and interstitial fibrosis. J. Exp. Med. 185, 1371–1380 (1997).

    Article  CAS  Google Scholar 

  12. Besse-Eschmann, V., Le Hir, M., Endlich, N. & Endlich, K. Alteration of podocytes in a murine model of crescentic glomerulonephritis. Histochem. Cell Biol. 122, 139–149 (2004).

    Article  CAS  Google Scholar 

  13. Moeller, M.J. et al. Podocytes populate cellular crescents in a murine model of inflammatory glomerulonephritis. J. Am. Soc. Nephrol. 15, 61–67 (2004).

    Article  Google Scholar 

  14. Le Hir, M. et al. Podocyte bridges between the tuft and Bowman's capsule: an early event in experimental crescentic glomerulonephritis. J. Am. Soc. Nephrol. 12, 2060–2071 (2001).

    CAS  PubMed  Google Scholar 

  15. Thorner, P.S., Ho, M., Eremina, V., Sado, Y. & Quaggin, S. Podocytes contribute to the formation of glomerular crescents. J. Am. Soc. Nephrol. 19, 495–502 (2008).

    Article  Google Scholar 

  16. Bariéty, J. & Bruneval, P. Activated parietal epithelial cells or dedifferentiated podocytes in FSGS: can we make the difference? Kidney Int. 69, 194 (2006).

    Article  Google Scholar 

  17. Schiwek, D. et al. Stable expression of nephrin and localization to cell-cell contacts in novel murine podocyte cell lines. Kidney Int. 66, 91–101 (2004).

    Article  CAS  Google Scholar 

  18. Simpson, K.J. et al. Identification of genes that regulate epithelial cell migration using an siRNA screening approach. Nat. Cell Biol. 10, 1027–1038 (2008).

    Article  CAS  Google Scholar 

  19. Hancock, W.W. & Atkins, R.C. Cellular composition of crescents in human rapidly progressive glomerulonephritis identified using monoclonal antibodies. Am. J. Nephrol. 4, 177–181 (1984).

    Article  CAS  Google Scholar 

  20. Lin, F. et al. Respective roles of decay-accelerating factor and CD59 in circumventing glomerular injury in acute nephrotoxic serum nephritis. J. Immunol. 172, 2636–2642 (2004).

    Article  CAS  Google Scholar 

  21. Peoples, G.E. et al. T lymphocytes that infiltrate tumors and atherosclerotic plaques produce heparin-binding epidermal growth factor-like growth factor and basic fibroblast growth factor: a potential pathologic role. Proc. Natl. Acad. Sci. USA 92, 6547–6551 (1995).

    Article  CAS  Google Scholar 

  22. Lee, D. et al. Epiregulin is not essential for development of intestinal tumors but is required for protection from intestinal damage. Mol. Cell. Biol. 24, 8907–8916 (2004).

    Article  CAS  Google Scholar 

  23. Osherov, N. & Levitzki, A. Epidermal-growth-factor-dependent activation of the src-family kinases. Eur. J. Biochem. 225, 1047–1053 (1994).

    Article  CAS  Google Scholar 

  24. Faul, C., Asanuma, K., Yanagida-Asanuma, E., Kim, K. & Mundel, P. Actin up: regulation of podocyte structure and function by components of the actin cytoskeleton. Trends Cell Biol. 17, 428–437 (2007).

    Article  CAS  Google Scholar 

  25. Lee, Y.J., Shin, S.J., Lin, S.R., Tan, M.S. & Tsai, J.H. Increased expression of heparin binding epidermal growth-factor-like growth factor mRNA in the kidney of streptozotocin-induced diabetic rats. Biochem. Biophys. Res. Commun. 207, 216–222 (1995).

    Article  CAS  Google Scholar 

  26. Paizis, K. et al. Heparin-binding epidermal growth factor-like growth factor in experimental models of membranous and minimal change nephropathy. Kidney Int. 53, 1162–1171 (1998).

    Article  CAS  Google Scholar 

  27. Khong, T.F. et al. Inhibition of heparin-binding epidermal growth factor-like growth factor increases albuminuria in puromycin aminonucleoside nephrosis. Kidney Int. 58, 1098–1107 (2000).

    Article  CAS  Google Scholar 

  28. Levy, J.B., Turner, A.N., Rees, A.J. & Pusey, C.D. Long-term outcome of anti-glomerular basement membrane antibody disease treated with plasma exchange and immunosuppression. Ann. Intern. Med. 134, 1033–1042 (2001).

    Article  CAS  Google Scholar 

  29. Salama, A.D., Levy, J.B., Lightstone, L. & Pusey, C.D. Goodpasture's disease. Lancet 358, 917–920 (2001).

    Article  CAS  Google Scholar 

  30. Topham, P.S. et al. Lack of chemokine receptor CCR1 enhances Th1 responses and glomerular injury during nephrotoxic nephritis. J. Clin. Invest. 104, 1549–1557 (1999).

    Article  CAS  Google Scholar 

  31. Ng, Y.Y. et al. Glomerular epithelial-myofibroblast transdifferentiation in the evolution of glomerular crescent formation. Nephrol. Dial. Transplant. 14, 2860–2872 (1999).

    Article  CAS  Google Scholar 

  32. Nikolic-Paterson, D.J. & Atkins, R.C. The role of macrophages in glomerulonephritis. Nephrol. Dial. Transplant. 16 (suppl. 5), 3–7 (2001).

    Article  CAS  Google Scholar 

  33. Boucher, A., Droz, D., Adafer, E. & Noel, L.H. Relationship between the integrity of Bowman's capsule and the composition of cellular crescents in human crescentic glomerulonephritis. Lab. Invest. 56, 526–533 (1987).

    CAS  PubMed  Google Scholar 

  34. Kalluri, R., Danoff, T.M., Okada, H. & Neilson, E.G. Susceptibility to anti-glomerular basement membrane disease and Goodpasture syndrome is linked to MHC class II genes and the emergence of T cell-mediated immunity in mice. J. Clin. Invest. 100, 2263–2275 (1997).

    Article  CAS  Google Scholar 

  35. Guettier, C. et al. Immunohistochemical demonstration of parietal epithelial cells and macrophages in human proliferative extra-capillary lesions. Virchows Arch. A Pathol. Anat. Histopathol. 409, 739–748 (1986).

    Article  CAS  Google Scholar 

  36. Levy, J.B. & Pusey, C.D. Anti-glomerular basement membrane disease. in Oxford Textbook of Medicine, 4th edn. (eds. Warrell, D.A., Cox, T.M. & Firth, J.D.) (Oxford University Press, Oxford, 2003).

  37. Polihronis, M., Murphy, B.F., Pearse, M.J. & Power, D.A. Heparin-binding epidermal growth factor-like growth factor, an immediate-early gene for mesangial cells, is up-regulated in the Thy-1.1 model. Exp. Nephrol. 4, 271–278 (1996).

    CAS  PubMed  Google Scholar 

  38. Takemura, T. et al. Heparin-binding EGF-like growth factor is expressed by mesangial cells and is involved in mesangial proliferation in glomerulonephritis. J. Pathol. 189, 431–438 (1999).

    Article  CAS  Google Scholar 

  39. Triantafyllopoulou, A. et al. Proliferative lesions and metalloproteinase activity in murine lupus nephritis mediated by type I interferons and macrophages. Proc. Natl. Acad. Sci. USA 107, 3012–3017 (2010).

    Article  CAS  Google Scholar 

  40. Chugh, S. et al. Aminopeptidase A: a nephritogenic target antigen of nephrotoxic serum. Kidney Int. 59, 601–613 (2001).

    Article  CAS  Google Scholar 

  41. Englert, C. et al. WT1 suppresses synthesis of the epidermal growth factor receptor and induces apoptosis. EMBO J. 14, 4662–4675 (1995).

    Article  CAS  Google Scholar 

  42. Elenius, K., Paul, S., Allison, G., Sun, J. & Klagsbrun, M. Activation of HER4 by heparin-binding EGF-like growth factor stimulates chemotaxis but not proliferation. EMBO J. 16, 1268–1278 (1997).

    Article  CAS  Google Scholar 

  43. Mishra, R., Leahy, P. & Simonson, M.S. Gene expression profiling reveals role for EGF-family ligands in mesangial cell proliferation. Am. J. Physiol. Renal Physiol. 283, F1151–F1159 (2002).

    Article  Google Scholar 

  44. Kim, H.S. et al. Identification of novel Wilms' tumor suppressor gene target genes implicated in kidney development. J. Biol. Chem. 282, 16278–16287 (2007).

    Article  CAS  Google Scholar 

  45. Wassef, L., Kelly, D.J. & Gilbert, R.E. Epidermal growth factor receptor inhibition attenuates early kidney enlargement in experimental diabetes. Kidney Int. 66, 1805–1814 (2004).

    Article  CAS  Google Scholar 

  46. Advani, A. et al. Inhibition of the epidermal growth factor receptor preserves podocytes and attenuates albuminuria in experimental diabetic nephropathy. Nephrology 16, 573–581 (2011).

    Article  Google Scholar 

  47. Paizis, K. et al. Heparin-binding epidermal growth factor-like growth factor is expressed in the adhesive lesions of experimental focal glomerular sclerosis. Kidney Int. 55, 2310–2321 (1999).

    Article  CAS  Google Scholar 

  48. Jackson, L.F. et al. Defective valvulogenesis in HB-EGF and TACE-null mice is associated with aberrant BMP signaling. EMBO J. 22, 2704–2716 (2003).

    Article  CAS  Google Scholar 

  49. Luetteke, N.C. et al. TGF α deficiency results in hair follicle and eye abnormalities in targeted and waved-1 mice. Cell 73, 263–278 (1993).

    Article  CAS  Google Scholar 

  50. Mann, G.B. et al. Mice with a null mutation of the TGF α gene have abnormal skin architecture, wavy hair, and curly whiskers and often develop corneal inflammation. Cell 73, 249–261 (1993).

    Article  CAS  Google Scholar 

  51. Moeller, M.J., Sanden, S.K., Soofi, A., Wiggins, R.C. & Holzman, L.B. Podocyte-specific expression of cre recombinase in transgenic mice. Genesis 35, 39–42 (2003).

    Article  CAS  Google Scholar 

  52. Novak, A., Guo, C., Yang, W., Nagy, A. & Lobe, C.G. Z/EG, a double reporter mouse line that expresses enhanced green fluorescent protein upon Cre-mediated excision. Genesis 28, 147–155 (2000).

    Article  CAS  Google Scholar 

  53. Shigehara, T. et al. Inducible podocyte-specific gene expression in transgenic mice. J. Am. Soc. Nephrol. 14, 1998–2003 (2003).

    CAS  Google Scholar 

  54. Eremina, V. et al. VEGF inhibition and renal thrombotic microangiopathy. N. Engl. J. Med. 358, 1129–1136 (2008).

    Article  CAS  Google Scholar 

  55. Lee, T.C. & Threadgill, D.W. Generation and validation of mice carrying a conditional allele of the epidermal growth factor receptor. Genesis 47, 85–92 (2009).

    Article  CAS  Google Scholar 

  56. Le Jan, S. et al. Angiopoietin-like 4 is a proangiogenic factor produced during ischemia and in conventional renal cell carcinoma. Am. J. Pathol. 162, 1521–1528 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by INSERM, grant ANR-08-EBIO-003 (P.-L.T.) from l'Agence Nationale de la Recherche of France, grant 01GN0805 (K.E.) from the German Federal Ministry of Education and Research (BMBF) and grants CA43793 (S.W.S.) and DK30932 (D.S.) from the US National Institutes of Health. We are grateful to la Fondation pour la Recherche Médicale and la Fondation Lefoulon-Delalande for supporting G.B. and C.F., respectively. We thank L.B. Holzman (Perelman School of Medicine, University of Pennsylvania) for the use of podocin-Cre mice crossed with Z/EGFP mice. We also thank X. Biolchini, C. Kitou, C. Martin, E. Huc and the ERI970 team for assistance in animal care and handling, H. Wegner, R. Maciejewski and T. Felix for technical assistance and J. Peters for help with fluorescence-activated cell sorting (FACS; supported by InnoProfile grant 03IP612 of the BMBF). We acknowledge administrative support from M.-C. Poeuf, V. Oberweiss, A. De Rueda, M. Autran and P. Coudol.

Author information

Authors and Affiliations

Authors

Contributions

M.F., G.B. and P.-L.T. conceived the project and experiments. P.-L.T. and N.E. supervised the project. S.S., C.F., M.M., S.V. and E.S. developed methods to culture and analyze primary podocytes and conceived experiments for gene expression analysis. E.R. and M.M. carried out electron microscopy (EM) studies. S.W.S., S.E.Q., J.B.K., D.W.T., I.C. and C.B. helped generate mice with targeted deficiency of HBEGF, TGF-α, epiregulin and Egfr. A.G. and S.G. carried out in situ hybridization studies. D.J.S. and L.M. provided nephrotoxic serum and discussed data with P.-L.T. K.E., C.B. and J.-C.D. also discussed experiments with P.-L.T. and N.E. P.-L.T., G.B., M.M., C.F. and N.S. carried out all in vivo studies. M.F., A.R. and P.C. analyzed human kidney biopsies collected by X.B. G.B. and M.F. contributed equally to the study.

Corresponding author

Correspondence to Pierre-Louis Tharaux.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Methods (PDF 5129 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bollée, G., Flamant, M., Schordan, S. et al. Epidermal growth factor receptor promotes glomerular injury and renal failure in rapidly progressive crescentic glomerulonephritis. Nat Med 17, 1242–1250 (2011). https://doi.org/10.1038/nm.2491

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2491

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing