Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Protein folding in the cell: an inside story

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mitochondrial protein import and the demonstration that a folding machine assists refolding of newly-imported proteins.
Figure 2: Cutaway views of crystallographic models of unliganded GroEL and an asymmetric GroEL-GroES-ADP7 complex.
Figure 3: The GroEL-GroES reaction cycle.

References

  1. Anfinsen, C.B. Principles that govern the folding of protein chains. Science 181, 223–230 (1973).

    Article  CAS  Google Scholar 

  2. Horwich, A.L. et al. Structure and expression of a cDNA for the nuclear coded precursor of human mitochondrial ornithine transcarbamylase. Science 224, 1068–1074 (1984).

    Article  CAS  Google Scholar 

  3. Cheng, M.Y., Pollock, R.A., Hendrick, J.P. & Horwich, A.L. Import and processing of human ornithine transcarbamylase precursor by mitochondria from Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 84, 4063–4067 (1987).

    Article  CAS  Google Scholar 

  4. Pelham, H.R.B. Speculations on the functions of the major heat-shock and glucose-regulated proteins. Cell 46, 959–961 (1986).

    Article  CAS  Google Scholar 

  5. Chappell, T.G. et al. Uncoating ATPase is a member of the 70 kilodalton family of stress proteins. Cell 45, 3–13 (1986).

    Article  CAS  Google Scholar 

  6. Eilers, M. & Schatz, G. Binding of a specific ligand inhibits import of a purified precursor protein into mitochondria. Nature 322, 228–232 (1986).

    Article  CAS  Google Scholar 

  7. Cheng, M.-Y. et al. Mitochondrial heat shock protein HSP60 is essential for assembly of proteins imported into yeast mitochondria. Nature 337, 620–625 (1989).

    Article  CAS  Google Scholar 

  8. Ostermann, J., Horwich, A.L., Neupert, W. & Hartl, F.U. Protein folding in mitochondria requires complex formation with HSP60 and ATP hydrolysis. Nature 341, 125–130 (1989).

    Article  CAS  Google Scholar 

  9. McMullin, T.W. & Hallberg, R.L. A highly evolutionarily conserved mitochondrial protein is structurally related to the protein encoded by the Escherichia coli groEL gene. Mol. Cell. Biol. 8, 371–380 (1988).

    Article  CAS  Google Scholar 

  10. Reading, D.S., Hallberg, R.L. & Myers, A.M. Characterization of the yeast HSP60 gene coding for a mitochondrial assembly factor. Nature 337, 655–659 (1989).

    Article  CAS  Google Scholar 

  11. Dubaquié, Y., Looser, R., Fünfschilling, U., Jenö, P. & Rospert, S. Identification of in vivo substrates of the yeast mitochondrial chaperonins reveals overlapping but non-identical requirement for hsp60 and hsp10. EMBO J. 17, 5868–5876 (1998).

    Article  Google Scholar 

  12. Georgopoulos, C.P., Hendrix, R.W., Kaiser, A.D. & Wood, W.B. Role of the host cell in bacteriophage morphogenesis: Effects of a bacterial mutation on T4 head assembly. Nat. New Biol. 239, 38–41 (1972).

    Article  CAS  Google Scholar 

  13. Takano, T. & Kakefuda, T. Involvement of a bacterial factor in morphogenesis of bacteriophage capsid. Nat. New Biol. 239, 34–37 (1972).

    Article  CAS  Google Scholar 

  14. Barraclough, R. & Ellis, R.J. Protein synthesis in chloroplasts. IX. Assembly of newly-synthesized large subunits into ribulose bisphosphate carboxylase in isolated intact pea chloroplasts. Biochim. Biophys. Acta 608, 19–31 (1980).

    Article  CAS  Google Scholar 

  15. Hemmingsen, S.M. et al. Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature 333, 330–334 (1988).

    Article  CAS  Google Scholar 

  16. Trent, J.D. et al. A molecular chaperone from a thermophilic archaebacterium is related to the eukaryotic protein t-complex polypeptide-1. Nature 354, 490–493 (1991).

    Article  CAS  Google Scholar 

  17. Ursic, D. & Culbertson, M.R. The yeast homolog to mouse Tcp-1 affects microtubule-mediated processes. Mol. Cell. Biol. 11, 2629–2640 (1991).

    Article  CAS  Google Scholar 

  18. Lewis, V.A., Hynes, G.M., Zheng, D., Saibil, H. & Willison, K. T-complex polypeptide-1 is a subunit of a heteromeric particle in the eukaryotic cytosol. Nature 358, 249–252 (1992).

    Article  CAS  Google Scholar 

  19. Yaffe, M.B. et al. TCP1 complex is a molecular chaperone in tubulin biogenesis. Nature 358, 245–248 (1992).

    Article  CAS  Google Scholar 

  20. Gao, Y., Thomas, J.O., Chow, R.L., Lee, G.-H. & Cowan, N.J. A cytoplasmic chaperonin that catalyzes b-actin folding. Cell 69, 1043–1050 (1992).

    Article  CAS  Google Scholar 

  21. Goloubinoff, P., Christeller, J.T., Gatenby, A.A. & Lorimer, G.H. Reconstitution of active dimeric ribulose bisphosphate carboxylase from an unfolded state depends on two chaperonin proteins and MgATP. Nature 342, 884–889 (1989).

    Article  CAS  Google Scholar 

  22. Martin, J. et al. Chaperonin-mediated protein folding occurs at the surface of GroEL via a molten globule-like intermediate. Nature 352, 36–42 (1991).

    Article  CAS  Google Scholar 

  23. Langer, T., Pfeifer, G., Martin, J., Baumeister, W. & Hartl, F.U. Chaperonin-mediated protein folding: GroES binds to one end of the GroEL cylinder, which accommodates the protein substrate within its central cavity. EMBO J. 11, 4757–4765 (1992).

    Article  CAS  Google Scholar 

  24. Braig, K., Simon, M., Furuya, F., Hainfeld, J.F. & Horwich, A.L. A polypeptide bound to the chaperonin GroEL is localized within a central cavity. Proc. Natl. Acad. Sci. USA 90, 3978–3982 (1993).

    Article  CAS  Google Scholar 

  25. Braig, K. et al. Crystal structure of GroEL at 2.8 Å. Nature 371, 578–586 (1994).

    Article  CAS  Google Scholar 

  26. Boisvert, D.C., Wang, J., Otwinowski, Z., Horwich, A.L. & Sigler, P.B. The 2.4 Å crystal structure of the bacterial chaperonin GroEL complexed with ATP gamma S. Nat. Struct. Biol. 3, 170–177 (1986).

    Article  Google Scholar 

  27. Saibil, H.R. et al. ATP induces large quaternary rearrangements in a cage-like chaperonin structure. Curr. Biol. 3, 265–273 (1993).

    Article  CAS  Google Scholar 

  28. Fenton, W.A., Kashi, Y., Furtak, K. & Horwich, A.L. Residues in chaperonin GroEL required for polypeptide binding and release. Nature 371, 614–619 (1994).

    Article  CAS  Google Scholar 

  29. Saibil, H., Dong, Z., Wood, S. & Auf der Mauer, A. Binding of chaperonins. Nature 353, 25–26 (1991).

    Article  CAS  Google Scholar 

  30. Weissman, J.S. et al. Mechanism of GroEL action: Productive release of polypeptide from a sequestered position under GroES. Cell 83, 577–587 (1995).

    Article  CAS  Google Scholar 

  31. Weissman, J.S., Rye, H.S., Fenton, W.A., Beechem, J.M. & Horwich, A.L. Characterization of the active intermediate of a GroEL-GroES-mediated protein folding reaction. Cell 84, 481–490 (1996).

    Article  CAS  Google Scholar 

  32. Weissman, J.S., Kashi, Y., Fenton, W.A. & Horwich, A.L. GroEL-mediated protein folding proceeds by multiple rounds of release and rebinding of non-native forms. Cell 78, 693–702 (1994).

    Article  CAS  Google Scholar 

  33. Roseman, A.M., Chen, S., White, H., Braig, K. & Saibil, H.R. The chaperonin ATPase cycle: mechanism of allosteric switching and movements of substrate-binding domains in GroEL. Cell 87, 241–251 (1996).

    Article  CAS  Google Scholar 

  34. Xu, Z., Horwich, A.L. & Sigler, P.B. The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Nature 388, 741–750 (1997).

    Article  CAS  Google Scholar 

  35. Glick, B.S. et al. Cytochromes c1 and b2 are sorted to the intermembrane space of yeast miotchondria by a stop-transfer mechanism. Cell 69, 809–822 (1992).

    Article  CAS  Google Scholar 

  36. Horwich, A.L., Farr, G.W. & Fenton, W.A. GroEL-GroES-mediated protein folding. Chem. Rev. 106, 1917–1930 (2006).

    Article  CAS  Google Scholar 

  37. Yifrach, O. & Horovitz, A. Nested cooperativity in the ATPase activity in the oligomeric chaperonin GroEL. Biochemistry 34, 5303–5308 (1995).

    Article  CAS  Google Scholar 

  38. Burston, S.G., Ranson, N.A. & Clarke, A.R. The origins and consequences of asymmetry in the chaperonin reaction cycle. J. Mol. Biol. 249, 138–152 (1995).

    Article  CAS  Google Scholar 

  39. Rye, H.S. et al. Distinct actions of cis and trans ATP within the double ring of the chaperonin GroEL. Nature 388, 792–798 (1997).

    Article  CAS  Google Scholar 

  40. Rye, H.S. et al. GroEL-GroES cycling: ATP and non-native polypeptide direct alternation of folding-active rings. Cell 97, 325–338 (1999).

    Article  CAS  Google Scholar 

  41. Horwich, A.L. & Saibil, H.R. The GroEL/GroES chaperonin machine. in Molecular Machines in Biology (ed. Frank, J.) (Cambridge Univ. Press, in press).

Download references

Acknowledgements

Many of the major participants in the chaperonin work referred to above are pictured in the illustration on p. xiii. There have been many other collaborators, both in the early work and more recently, who also contributed substantially to the understanding of this system. I regret that space limitations prevented me from referring to them here, but I want to express how deeply grateful I am to everyone with whom I've interacted. Surely, the recognition of this work is shared by all of us. But, more selfishly, it has been a pure joy for me over these past 20 years to work in the lab, at the bench, day by day and side by side with my group members, sharing our ideas, dreams, reagents, frustrations and, of course, joys of discovery as a scientific family. No one could ask for a more enjoyable life. I wish to thank the US National Institutes of Health for supporting the early phase of our work and the Howard Hughes Medical Institute (HHMI) for supporting our subsequent work. I am particularly grateful to the HHMI for allowing me to 'follow my nose' through this work, no matter how risky the undertaking. I also thank HHMI for making our work environment a paradise in which to pursue ideas and do experiments. Finally, I thank W. Fenton for his critical comments during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur L Horwich.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horwich, A. Protein folding in the cell: an inside story. Nat Med 17, 1211–1216 (2011). https://doi.org/10.1038/nm.2468

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2468

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing