Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A MEK-independent role for CRAF in mitosis and tumor progression

Abstract

RAF kinases regulate cell proliferation and survival and can be dysregulated in tumors1,2. The role of RAF in cell proliferation has been linked to its ability to activate mitogen-activated protein kinase kinase 1 (MEK) and mitogen-activated protein kinase 1 (ERK). Here we identify a MEK-independent role for RAF in tumor growth. Specifically, in mitotic cells, CRAF becomes phosphorylated on Ser338 and localizes to the mitotic spindle of proliferating tumor cells in vitro as well as in murine tumor models and in biopsies from individuals with cancer. Treatment of tumors with allosteric inhibitors, but not ATP-competitive RAF inhibitors, prevents CRAF phosphorylation on Ser338 and localization to the mitotic spindle and causes cell-cycle arrest at prometaphase. Furthermore, we identify phospho-Ser338 CRAF as a potential biomarker for tumor progression and a surrogate marker for allosteric RAF blockade. Mechanistically, CRAF, but not BRAF, associates with Aurora kinase A (Aurora-A) and Polo-like kinase 1 (Plk1) at the centrosomes and spindle poles during G2/M. Indeed, allosteric or genetic inhibition of phospho-Ser338 CRAF impairs Plk1 activation and accumulation at the kinetochores, causing prometaphase arrest, whereas a phospho-mimetic Ser338D CRAF mutant potentiates Plk1 activation, mitosis and tumor progression in mice. These findings show a previously undefined role for RAF in tumor progression beyond the RAF-MEK-ERK paradigm, opening new avenues for targeting RAF in cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CRAF is required for mitotic progression.
Figure 2: Phospho-Ser338 CRAF is upregulated in mitosis and localizes to the mitotic spindles in human cell lines and tumor biopsies.
Figure 3: CRAF interacts with Plk1 and promotes its activation and accumulation to the kinetochores at prometaphase.
Figure 4: The phospho-mimetic CRAF S338D alteration drives tumor growth and activates Plk1 in vivo.

Similar content being viewed by others

References

  1. Wellbrock, C., Karasarides, M. & Marais, R. The RAF proteins take centre stage. Nat. Rev. Mol. Cell Biol. 5, 875–885 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Dhillon, A.S., Hagan, S., Rath, O. & Kolch, W. MAP kinase signalling pathways in cancer. Oncogene 26, 3279–3290 (2007).

    Article  CAS  Google Scholar 

  3. Bollag, G. et al. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature 467, 596–599 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Flaherty, K.T. et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N. Engl. J. Med. 363, 809–819 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Joseph, E.W. et al. The RAF inhibitor PLX4032 inhibits ERK signaling and tumor cell proliferation in a V600E BRAF-selective manner. Proc. Natl. Acad. Sci. USA 107, 14903–14908 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. King, A.J. et al. Demonstration of a genetic therapeutic index for tumors expressing oncogenic BRAF by the kinase inhibitor SB-590885. Cancer Res. 66, 11100–11105 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Tsai, J. et al. Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. Proc. Natl. Acad. Sci. USA 105, 3041–3046 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Yang, H. et al. RG7204 (PLX4032), a selective BRAFV600E inhibitor, displays potent antitumor activity in preclinical melanoma models. Cancer Res. 70, 5518–5527 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Hatzivassiliou, G. et al. RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature 464, 431–435 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Heidorn, S.J. et al. Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell 140, 209–221 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Poulikakos, P.I., Zhang, C., Bollag, G., Shokat, K.M. & Rosen, N. RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature 464, 427–430 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Murphy, E.A. et al. Disruption of angiogenesis and tumor growth with an orally active drug that stabilizes the inactive state of PDGFRβ/B-RAF. Proc. Natl. Acad. Sci. USA 107, 4299–4304 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Alavi, A., Hood, J.D., Frausto, R., Stupack, D.G. & Cheresh, D.A. Role of Raf in vascular protection from distinct apoptotic stimuli. Science 301, 94–96 (2003).

    Article  CAS  Google Scholar 

  14. Alavi, A.S., Acevedo, L., Min, W. & Cheresh, D.A. Chemoresistance of endothelial cells induced by basic fibroblast growth factor depends on Raf-1-mediated inhibition of the proapoptotic kinase, ASK1. Cancer Res. 67, 2766–2772 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. McGlynn, L.M. et al. Ras/Raf-1/MAPK pathway mediates response to tamoxifen but not chemotherapy in breast cancer patients. Clin. Cancer Res. 15, 1487–1495 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Mikula, M. et al. Embryonic lethality and fetal liver apoptosis in mice lacking the c-raf-1 gene. EMBO J. 20, 1952–1962 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Weber, C.K., Slupsky, J.R., Kalmes, H.A. & Rapp, U.R. Active Ras induces heterodimerization of cRaf and BRaf. Cancer Res. 61, 3595–3598 (2001).

    CAS  PubMed  Google Scholar 

  18. Borysov, S.I., Cheng, A.W. & Guadagno, T.M. B-Raf is critical for MAPK activation during mitosis and is regulated in an M phase–dependent manner in Xenopus egg extracts. J. Biol. Chem. 281, 22586–22596 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Borysov, S.I. & Guadagno, T.M. A novel role for Cdk1/cyclin B in regulating B-raf activation at mitosis. Mol. Biol. Cell 19, 2907–2915 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Borysova, M.K., Cui, Y., Snyder, M. & Guadagno, T.M. Knockdown of B-Raf impairs spindle formation and the mitotic checkpoint in human somatic cells. Cell Cycle 7, 2894–2901 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Cui, Y., Borysova, M.K., Johnson, J.O. & Guadagno, T.M. Oncogenic B-Raf(V600E) induces spindle abnormalities, supernumerary centrosomes, and aneuploidy in human melanocytic cells. Cancer Res. 70, 675–684 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Cui, Y. & Guadagno, T.M. B-Raf(V600E) signaling deregulates the mitotic spindle checkpoint through stabilizing Mps1 levels in melanoma cells. Oncogene 27, 3122–3133 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Malumbres, M. & Barbacid, M. Cell cycle kinases in cancer. Curr. Opin. Genet. Dev. 17, 60–65 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Nigg, E.A. Mitotic kinases as regulators of cell division and its checkpoints. Nat. Rev. Mol. Cell Biol. 2, 21–32 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Taylor, S. & Peters, J.M. Polo and Aurora kinases: lessons derived from chemical biology. Curr. Opin. Cell Biol. 20, 77–84 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Macůrek, L. et al. Polo-like kinase-1 is activated by aurora A to promote checkpoint recovery. Nature 455, 119–123 (2008).

    Article  PubMed  Google Scholar 

  27. Petronczki, M., Lenart, P. & Peters, J.M. Polo on the rise-from mitotic entry to cytokinesis with Plk1. Dev. Cell 14, 646–659 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Seki, A., Coppinger, J.A., Jang, C.Y., Yates, J.R. & Fang, G. Bora and the kinase Aurora a cooperatively activate the kinase Plk1 and control mitotic entry. Science 320, 1655–1658 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Knauf, J.A. et al. Oncogenic RAS induces accelerated transition through G2/M and promotes defects in the G2 DNA damage and mitotic spindle checkpoints. J. Biol. Chem. 281, 3800–3809 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Luo, J. et al. A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell 137, 835–848 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. McInnes, C. et al. Inhibitors of Polo-like kinase reveal roles in spindle-pole maintenance. Nat. Chem. Biol. 2, 608–617 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Santamaria, A. et al. Use of the novel Plk1 inhibitor ZK-thiazolidinone to elucidate functions of Plk1 in early and late stages of mitosis. Mol. Biol. Cell 18, 4024–4036 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Steegmaier, M. et al. BI 2536, a potent and selective inhibitor of polo-like kinase 1, inhibits tumor growth in vivo. Curr. Biol. 17, 316–322 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Strebhardt, K. Multifaceted polo-like kinases: drug targets and antitargets for cancer therapy. Nat. Rev. Drug Discov. 9, 643–660 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Hüser, M. et al. MEK kinase activity is not necessary for Raf-1 function. EMBO J. 20, 1940–1951 (2001).

    Article  PubMed  Google Scholar 

  36. Hindley, A. & Kolch, W. Extracellular signal regulated kinase (ERK)/mitogen activated protein kinase (MAPK)-independent functions of Raf kinases. J. Cell Sci. 115, 1575–1581 (2002).

    CAS  PubMed  Google Scholar 

  37. Kamata, T. et al. BRAF inactivation drives aneuploidy by deregulating CRAF. Cancer Res. 70, 8475–8486 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K. Elliott and J. Lesperance for their assistance with the mouse experiments and immunohistochemistry, and M. Schmid, M. Kaulich and J. Desgrosellier for discussions. We thank K. Lee (US National Institutes of Health National Cancer Institute) and R. Erikson (Harvard University) for providing Plk1 constructs. D.A.C. was supported by grants CA78045, CA119335, CA95262 and CA104898 from the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

A.M. and D.A.C. designed the studies. E.A.M. designed and provided KG5. A.M., L.S., M.H., M.F.C., S.A., A.F. and S.J.A. performed experiments. A.M., L.S., M.H., M.F.C., S.A., A.F., S.J.A. and S.M.W. analyzed data. A.M. and D.A.C. wrote the manuscript. D.A.C. supervised the project.

Corresponding author

Correspondence to David A Cheresh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–14 and Supplementary Table 1 (PDF 2655 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mielgo, A., Seguin, L., Huang, M. et al. A MEK-independent role for CRAF in mitosis and tumor progression. Nat Med 17, 1641–1645 (2011). https://doi.org/10.1038/nm.2464

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2464

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer