Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes

Abstract

Development and preclinical testing of new cancer therapies is limited by the scarcity of in vivo models that authentically reproduce tumor growth and metastatic progression. We report new models for breast tumor growth and metastasis in the form of transplantable tumors derived directly from individuals undergoing treatment for breast cancer. These tumor grafts illustrate the diversity of human breast cancer and maintain essential features of the original tumors, including metastasis to specific sites. Co-engraftment of primary human mesenchymal stem cells maintains phenotypic stability of the grafts and increases tumor growth by promoting angiogenesis. We also report that tumor engraftment is a prognostic indicator of disease outcome for women with newly diagnosed breast cancer; orthotopic breast tumor grafting is a step toward individualized models for tumor growth, metastasis and prognosis. This bank of tumor grafts also serves as a publicly available resource for new models in which to study the biology of breast cancer.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tumor grafts resembled the original tumors from which they were derived.
Figure 2: Tumor grafts spontaneously metastasized to clinically relevant sites.
Figure 3: Co-engraftment of human mesenchymal stem cells (hMSCs) promotes vascularization and growth of tumor grafts.
Figure 4: Gene expression and copy number variations found in the original tumors are well maintained in tumor grafts.
Figure 5: Successful growth of primary tumor specimens as tumor grafts significantly predicted shortened survival times.

Similar content being viewed by others

References

  1. Hait, W.N. Anticancer drug development: the grand challenges. Nat. Rev. Drug Discov. 9, 253–254 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Ethier, S.P. Human breast cancer cell lines as models of growth regulation and disease progression. J. Mammary Gland Biol. Neoplasia 1, 111–121 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Bos, P.D., Nguyen, D.X. & Massague, J. Modeling metastasis in the mouse. Curr. Opin. Pharmacol. 10, 571–577 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Francia, G., Cruz-Munoz, W., Man, S., Xu, P. & Kerbel, R.S. Mouse models of advanced spontaneous metastasis for experimental therapeutics. Nat. Rev. Cancer 11, 135–141 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Neve, R.M. et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10, 515–527 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kao, J. et al. Molecular profiling of breast cancer cell lines defines relevant tumor models and provides a resource for cancer gene discovery. PLoS ONE 4, e6146 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Clarke, R. The role of preclinical animal models in breast cancer drug development. Breast Cancer Res. 11 (suppl. 3), S22 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Voskoglou-Nomikos, T., Pater, J.L. & Seymour, L. Clinical predictive value of the in vitro cell line, human xenograft, and mouse allograft preclinical cancer models. Clin. Cancer Res. 9, 4227–4239 (2003).

    PubMed  Google Scholar 

  9. Liu, H. et al. Cancer stem cells from human breast tumors are involved in spontaneous metastases in orthotopic mouse models. Proc. Natl. Acad. Sci. USA 107, 18115–18120 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Clarke, M.F. A self-renewal assay for cancer stem cells. Cancer Chemother. Pharmacol. 56 (suppl. 1), 64–68 (2005).

    Article  PubMed  Google Scholar 

  11. Press, J.Z. et al. Xenografts of primary human gynecological tumors grown under the renal capsule of NOD/SCID mice show genetic stability during serial transplantation and respond to cytotoxic chemotherapy. Gynecol. Oncol. 110, 256–264 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Kim, M.P. et al. Generation of orthotopic and heterotopic human pancreatic cancer xenografts in immunodeficient mice. Nat. Protoc. 4, 1670–1680 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Daniel, V.C. et al. A primary xenograft model of small-cell lung cancer reveals irreversible changes in gene expression imposed by culture in vitro. Cancer Res. 69, 3364–3373 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ding, L. et al. Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature 464, 999–1005 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Carey, L., Winer, E., Viale, G., Cameron, D. & Gianni, L. Triple-negative breast cancer: disease entity or title of convenience? Nat. Rev. Clin. Oncol. 7, 683–692 (2010).

    Article  PubMed  Google Scholar 

  16. Quintana, E. et al. Efficient tumour formation by single human melanoma cells. Nature 456, 593–598 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Agliano, A. et al. Human acute leukemia cells injected in NOD/LtSz-scid/IL-2Rγ null mice generate a faster and more efficient disease compared to other NOD/scid-related strains. Int. J. Cancer 123, 2222–2227 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Ito, M. et al. NOD/SCID/γ(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells. Blood 100, 3175–3182 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Wagner, K.U. Models of breast cancer: quo vadis, animal modeling? Breast Cancer Res. 6, 31–38 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. El-Haibi, C.P. & Karnoub, A.E. Mesenchymal stem cells in the pathogenesis and therapy of breast cancer. J. Mammary Gland Biol. Neoplasia 15, 399–409 (2010).

    Article  PubMed  Google Scholar 

  21. Karnoub, A.E. et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449, 557–563 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Marangoni, E. et al. A new model of patient tumor-derived breast cancer xenografts for preclinical assays. Clin. Cancer Res. 13, 3989–3998 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. van de Vijver, M.J. et al. A gene-expression signature as a predictor of survival in breast cancer. N. Engl. J. Med. 347, 1999–2009 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Paik, S. et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N. Engl. J. Med. 351, 2817–2826 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Parker, J.S. et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J. Clin. Oncol. 27, 1160–1167 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Perou, C.M. et al. Molecular portraits of human breast tumours. Nature 406, 747–752 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Sørlie, T. et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl. Acad. Sci. USA 98, 10869–10874 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sorlie, T. et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc. Natl. Acad. Sci. USA 100, 8418–8423 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hu, Z. et al. The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genomics 7, 96 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Klopp, A.H., Gupta, A., Spaeth, E., Andreeff, M. & Marini, F. III. Concise review: dissecting a discrepancy in the literature: do mesenchymal stem cells support or suppress tumor growth? Stem Cells 29, 11–19 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Kuperwasser, C. et al. Reconstruction of functionally normal and malignant human breast tissues in mice. Proc. Natl. Acad. Sci. USA 101, 4966–4971 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu, S. & Wicha, M.S. Targeting breast cancer stem cells. J. Clin. Oncol. 28, 4006–4012 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li, F., Tiede, B., Massague, J. & Kang, Y. Beyond tumorigenesis: cancer stem cells in metastasis. Cell Res. 17, 3–14 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Hoffman, R.M. Green fluorescent protein to visualize cancer progression and metastasis. Methods Enzymol. 302, 20–31 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Welm, B.E., Dijkgraaf, G.J., Bledau, A.S., Welm, A.L. & Werb, Z. Lentiviral transduction of mammary stem cells for analysis of gene function during development and cancer. Cell Stem Cell 2, 90–102 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to the individuals who donated tissue toward this endeavor and the Associated Regional and University Pathologists Research Institute staff for performing the clinical stains. This work was supported by funding from the Department of Defense Breast Cancer Research Program (to A.L.W.; BC075015), the American Association for Cancer Research and Breast Cancer Research Foundation (to A.L.W.; 07−60−26−WELM) and the Huntsman Cancer Foundation. We also used the Huntsman Cancer Institute Tissue Resource and Application Core and Comparative Oncology Core facilities, which is supported in part by P30 CA042014 (to the Huntsman Cancer Institute).

Author information

Authors and Affiliations

Authors

Contributions

Y.S.D., G.W., Y.-C.L., M.T.W.E., C.M. and I.J.S. performed the experiments. S.S.B., E.N., L.N. and R.L.R. provided tissues. Y.S.D., G.W., P.S.B., R.F., B.A.M., B.E.W. and A.L.W. analyzed the data. A.L.W. wrote the paper, and B.E.W. and P.S.B. edited the paper. A.L.W. supervised the project.

Corresponding author

Correspondence to Alana L Welm.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods, Supplementary Results and Discussion, Supplementary Tables 2 and 3 and Supplementary Figures 1–32. (PDF 13517 kb)

Supplementary Table 1

Detailed patient, tumor and tumor graft information. (XLS 36 kb)

Supplementary Table 4

Expression data from preclustered intrinsic gene set. (TXT 2892 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeRose, Y., Wang, G., Lin, YC. et al. Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nat Med 17, 1514–1520 (2011). https://doi.org/10.1038/nm.2454

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2454

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer