Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Epigenetic suppression of GAD65 expression mediates persistent pain

Abstract

Chronic pain is a common neurological disease involving lasting, multifaceted maladaptations ranging from gene modulation to synaptic dysfunction and emotional disorders. Sustained pathological stimuli in many diseases alter the output activities of certain genes through epigenetic modifications, but it is unclear how epigenetic mechanisms operate in the development of chronic pain. We show here that in the rat brainstem nucleus raphe magnus, which is important for central mechanisms of chronic pain, persistent inflammatory and neuropathic pain epigenetically suppresses Gad2 (encoding glutamic acid decarboxylase 65 (GAD65)) transcription through histone deacetylase (HDAC)-mediated histone hypoacetylation, resulting in impaired γ-aminobutyric acid (GABA) synaptic inhibition. Gad2 knockout mice showed sensitized pain behavior and impaired GABA synaptic function in their brainstem neurons. In wild-type but not Gad2 knockout mice, HDAC inhibitors strongly increased GAD65 activity, restored GABA synaptic function and relieved sensitized pain behavior. These findings suggest GAD65 and HDACs as potential therapeutic targets in an epigenetic approach to the treatment of chronic pain.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Persistent inflammatory pain induces time-dependent hyperacetylation of histones H3 and H4.
Figure 2: Persistent pain decreases GABAergic synaptic function by inhibiting presynaptic GABA release.
Figure 3: Persistent pain induces histone hypoacetylation at the Gad2 promoter.
Figure 4: Persistent inflammatory and neuropathic pain reduces GAD65 expression.
Figure 5: Histone hyperacetylation overcomes pain-induced reduction in GABA synaptic function through GAD65.
Figure 6: HDAC inhibitors relieve pain through GAD65.

References

  1. Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. MacDonald, J.L. & Roskams, A.J. Epigenetic regulation of nervous system development by DNA methylation and histone deacetylation. Prog. Neurobiol. 88, 170–183 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Jenuwein, T. & Allis, C.D. Translating the histone code. Science 293, 1074–1080 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Strahl, B.D. & Allis, C.D. The language of covalent histone modifications. Nature 403, 41–45 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Urdinguio, R.G., Sanchez-Mut, J.V. & Esteller, M. Epigenetic mechanisms in neurological diseases: genes, syndromes, and therapies. Lancet Neurol. 8, 1056–1072 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Chuang, D.M., Leng, Y., Marinova, Z., Kim, H.J. & Chiu, C.T. Multiple roles of HDAC inhibition in neurodegenerative conditions. Trends Neurosci. 32, 591–601 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Guan, J.S. et al. HDAC2 negatively regulates memory formation and synaptic plasticity. Nature 459, 55–60 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tsankova, N., Renthal, W., Kumar, A. & Nestler, E.J. Epigenetic regulation in psychiatric disorders. Nat. Rev. Neurosci. 8, 355–367 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Grayson, D.R., Kundakovic, M. & Sharma, R.P. Is there a future for histone deacetylase inhibitors in the pharmacotherapy of psychiatric disorders? Mol. Pharmacol. 77, 126–135 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Reichling, D.B. & Levine, J.D. Critical role of nociceptor plasticity in chronic pain. Trends Neurosci. 32, 611–618 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Campbell, J.N. & Meyer, R.A. Mechanisms of neuropathic pain. Neuron 52, 77–92 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Scascighini, L. & Sprott, H. Chronic nonmalignant pain: a challenge for patients and clinicians. Nat. Clin. Pract. Rheumatol. 4, 74–81 (2008).

    Article  PubMed  Google Scholar 

  13. Costigan, M., Scholz, J. & Woolf, C.J. Neuropathic pain: a maladaptive response of the nervous system to damage. Annu. Rev. Neurosci. 32, 1–32 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Milligan, E.D. & Watkins, L.R. Pathological and protective roles of glia in chronic pain. Nat. Rev. Neurosci. 10, 23–36 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bai, G., Wei, D., Zou, S., Ren, K. & Dubner, R. Inhibition of class II histone deacetylases in the spinal cord attenuates inflammatory hyperalgesia. Mol. Pain 6, 51 (2010).

    PubMed  PubMed Central  Google Scholar 

  16. Chiechio, S. et al. Epigenetic modulation of mGlu2 receptors by histone deacetylase inhibitors in the treatment of inflammatory pain. Mol. Pharmacol. 75, 1014–1020 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Uchida, H., Ma, L. & Ueda, H. Epigenetic gene silencing underlies C-fiber dysfunctions in neuropathic pain. J. Neurosci. 30, 4806–4814 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Porreca, F., Ossipov, M.H. & Gebhart, G.F. Chronic pain and medullary descending facilitation. Trends Neurosci. 25, 319–325 (2002).

    CAS  PubMed  Google Scholar 

  19. Fields, H. State-dependent opioid control of pain. Nat. Rev. Neurosci. 5, 565–575 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Zhang, L. & Hammond, D.L. Cellular basis for opioid potentiation in the rostral ventromedial medulla of rats with persistent inflammatory nociception. Pain 149, 107–116 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang, Z. & Pan, Z.Z. Synaptic mechanism for functional synergism between delta- and mu-opioid receptors. J. Neurosci. 30, 4735–4745 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zucker, R.S. & Regehr, W.G. Short-term synaptic plasticity. Annu. Rev. Physiol. 64, 355–405 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Soghomonian, J.J. & Martin, D.L. Two isoforms of glutamate decarboxylase: why? Trends Pharmacol. Sci. 19, 500–505 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Tian, N. et al. The role of the synthetic enzyme GAD65 in the control of neuronal γ-aminobutyric acid release. Proc. Natl. Acad. Sci. USA 96, 12911–12916 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Finnin, M.S. et al. Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature 401, 188–193 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Chawla, S., Vanhoutte, P., Arnold, F.J., Huang, C.L. & Bading, H. Neuronal activity-dependent nucleocytoplasmic shuttling of HDAC4 and HDAC5. J. Neurochem. 85, 151–159 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Kurdistani, S.K. & Grunstein, M. Histone acetylation and deacetylation in yeast. Nat. Rev. Mol. Cell Biol. 4, 276–284 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Kim, S.H. & Chung, J.M. An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain 50, 355–363 (1992).

    Article  CAS  Google Scholar 

  29. Pan, Z.Z., Tershner, S.A. & Fields, H.L. Cellular mechanism for anti-analgesic action of agonists of the κ-opioid receptor. Nature 389, 382–385 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Pan, Z.Z. Mu-opposing actions of the κ-opioid receptor. Trends Pharmacol. Sci. 19, 94–98 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Blackburn-Munro, G. & Blackburn-Munro, R.E. Chronic pain, chronic stress and depression: coincidence or consequence? J. Neuroendocrinol. 13, 1009–1023 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Duric, V. et al. A negative regulator of MAP kinase causes depressive behavior. Nat. Med. 16, 1328–1332 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Watkins, L.R. & Maier, S.F. The pain of being sick: implications of immune-to-brain communication for understanding pain. Annu. Rev. Psychol. 51, 29–57 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Watkins, L.R. & Maier, S.F. Beyond neurons: evidence that immune and glial cells contribute to pathological pain states. Physiol. Rev. 82, 981–1011 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Lacroix-Fralish, M.L., Ledoux, J.B. & Mogil, J.S. The Pain Genes Database: an interactive web browser of pain-related transgenic knockout studies. Pain 131, 3.e1–3.e4 (2007).

    Article  Google Scholar 

  36. Patel, A.B., de Graaf, R.A., Martin, D.L., Battaglioli, G. & Behar, K.L. Evidence that GAD65 mediates increased GABA synthesis during intense neuronal activity in vivo. J. Neurochem. 97, 385–396 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Moore, K.A. et al. Partial peripheral nerve injury promotes a selective loss of GABAergic inhibition in the superficial dorsal horn of the spinal cord. J. Neurosci. 22, 6724–6731 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Munro, G., Ahring, P.K. & Mirza, N.R. Developing analgesics by enhancing spinal inhibition after injury: GABAA receptor subtypes as novel targets. Trends Pharmacol. Sci. 30, 453–459 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Knabl, J. et al. Reversal of pathological pain through specific spinal GABAA receptor subtypes. Nature 451, 330–334 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Kubo, K. et al. Thermal hyperalgesia via supraspinal mechanisms in mice lacking glutamate decarboxylase 65. J. Pharmacol. Exp. Ther. 331, 162–169 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Vit, J.P. et al. Adenovector GAD2 gene delivery into the rat trigeminal ganglion produces orofacial analgesia. Mol. Pain 5, 42 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Pan, Z.Z., Williams, J.T. & Osborne, P.B. Opioid actions on single nucleus raphe magnus neurons from rat and guinea pig in vitro. J. Physiol. (Lond.) 427, 519–532 (1990).

    Article  CAS  Google Scholar 

  43. Gilbert, A.K. & Franklin, K.B. GABAergic modulation of descending inhibitory systems from the rostral ventromedial medulla (RVM). Dose-response analysis of nociception and neurological deficits. Pain 90, 25–36 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Heinricher, M.M. & Kaplan, H.J. GABA-mediated inhibition in rostral ventromedial medulla: role in nociceptive modulation in the lightly anesthetized rat. Pain 47, 105–113 (1991).

    Article  CAS  PubMed  Google Scholar 

  45. Ren, W. & Neugebauer, V. Pain-related increase of excitatory transmission and decrease of inhibitory transmission in the central nucleus of the amygdala are mediated by mGluR1. Mol. Pain 6, 93 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Apkarian, A.V., Baliki, M.N. & Geha, P.Y. Towards a theory of chronic pain. Prog. Neurobiol. 87, 81–97 (2009).

    Article  PubMed  Google Scholar 

  47. Woolf, C.J. & Hashmi, M. Use and abuse of opioid analgesics: potential methods to prevent and deter non-medical consumption of prescription opioids. Curr. Opin. Investig. Drugs 5, 61–66 (2004).

    PubMed  Google Scholar 

  48. Doehring, A., Geisslinger, G. & Lotsch, J. Epigenetics in pain and analgesia: an imminent research field. Eur. J. Pain 15,11–16 (2010).

    Article  PubMed  Google Scholar 

  49. Roozendaal, B. et al. Membrane-associated glucocorticoid activity is necessary for modulation of long-term memory via chromatin modification. J. Neurosci. 30, 5037–5046 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ma, J., Zhang, Y., Kalyuzhny, A.E. & Pan, Z.Z. Emergence of functional delta-opioid receptors induced by long-term treatment with morphine. Mol. Pharmacol. 69, 1137–1145 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Ma, J. & Pan, Z.Z. Contribution of brainstem GABA(A) synaptic transmission to morphine analgesic tolerance. Pain 122, 163–173 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health National Institute on Drug Abuse grants DA023069 and DA027541. We thank L. Gao of Baylor College of Medicine for his generous gifts of GAD67 primers.

Author information

Authors and Affiliations

Authors

Contributions

Z.Z. designed the studies, performed most of the experiments and wrote a draft manuscript. Y.-Q.C., F.Z. and B.B. conducted some of the molecular and behavioral experiments. Z.Z.P. was involved in the overall designs of the project and individual experiments, the data analyses and the writing of the final manuscript.

Corresponding author

Correspondence to Zhizhong Z Pan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 and Supplementary Methods (PDF 1460 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Cai, YQ., Zou, F. et al. Epigenetic suppression of GAD65 expression mediates persistent pain. Nat Med 17, 1448–1455 (2011). https://doi.org/10.1038/nm.2442

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2442

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing