Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

Vascular anastomosis using controlled phase transitions in poloxamer gels

Abstract

Vascular anastomosis is the cornerstone of vascular, cardiovascular and transplant surgery. Most anastomoses are performed with sutures, which are technically challenging and can lead to failure from intimal hyperplasia and foreign body reaction. Numerous alternatives to sutures have been proposed, but none has proven superior, particularly in small or atherosclerotic vessels. We have developed a new method of sutureless and atraumatic vascular anastomosis that uses US Food and Drug Administration (FDA)-approved thermoreversible tri-block polymers to temporarily maintain an open lumen for precise approximation with commercially available glues. We performed end-to-end anastomoses five times more rapidly than we performed hand-sewn controls, and vessels that were too small (<1.0 mm) to sew were successfully reconstructed with this sutureless approach. Imaging of reconstructed rat aorta confirmed equivalent patency, flow and burst strength, and histological analysis demonstrated decreased inflammation and fibrosis at up to 2 years after the procedure. This new technology has potential for improving efficiency and outcomes in the surgical treatment of cardiovascular disease.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Thermoreversible properties of poloxamer nanogel.
Figure 2: Thermoreversible poloxamer nanogel and cyanoacrylate glue sutureless anastomoses in vivo.
Figure 3: Poloxamer nanogel anastomoses show long-term patency, flow and equivalent burst strength in vivo.
Figure 4: Poloxamer nanogel anastomoses show less vascular intimal damage.

Similar content being viewed by others

References

  1. Moseley, J. Alexis Carrel, the man unknown. Journey of an idea. J. Am. Med. Assoc. 244, 1119–1121 (1980).

    Article  CAS  Google Scholar 

  2. Murray, J.E. The first successful organ transplants in man. J. Am. Coll. Surg. 200, 5–9 (2005).

    Article  PubMed  Google Scholar 

  3. Motwani, J.G. & Topol, E.J. Aortocoronary saphenous vein graft disease: pathogenesis, predisposition, and prevention. Circulation 97, 916–931 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Schwartz, S.M., deBlois, D. & O'Brien, E.R. The intima. Soil for atherosclerosis and restenosis. Circ. Res. 77, 445–465 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Zubilewicz, T. Injury in vascular surgery—the intimal hyperplastic response. Med. Sci. Monit. 7, 316–324 (2001).

    CAS  PubMed  Google Scholar 

  6. Charlson, M.E. & Isom, O.W. Clinical practice. Care after coronary-artery bypass surgery. N. Engl. J. Med. 348, 1456–1463 (2003).

    Article  PubMed  Google Scholar 

  7. French, B.N. & Rewcastle, N.B. Recurrent stenosis at site of carotid endarterectomy. Stroke 8, 597–605 (1977).

    Article  CAS  PubMed  Google Scholar 

  8. Ojha, M., Leask, R.L., Johnston, K.W., David, T.E. & Butany, J. Histology and morphology of 59 internal thoracic artery grafts and their distal anastomoses. Ann. Thorac. Surg. 70, 1338–1344 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Ameli, F.M., Provan, J.L., Williamson, C. & Keuchler, P.M. Etiology and management of aorto-femoral bypass graft failure. J. Cardiovasc. Surg. (Torino) 28, 695–700 (1987).

    CAS  Google Scholar 

  10. Beris, A.E. et al. Digit and hand replantation. Arch. Orthop. Trauma Surg. 130, 1141–1147 (2010).

    Article  PubMed  Google Scholar 

  11. Erdmann, D. et al. Side-to-side sutureless vascular anastomosis with magnets. J. Vasc. Surg. 40, 505–511 (2004).

    Article  PubMed  Google Scholar 

  12. Liu, L., Liu, J., Zhu, M. & Hu, S. Experimental study of one-shot vascular anastomostic device for proximal vein graft anastomoses. Ann. Thorac. Surg. 82, 303–306 (2006).

    Article  PubMed  Google Scholar 

  13. Wiklund, L., Bonilla, L.F. & Berglin, E. A new mechanical connector for distal coronary artery anastomoses in coronary artery bypass grafting: a randomized, controlled study. J. Thorac. Cardiovasc. Surg. 129, 146–150 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Cho, A.B. et al. Fibrin glue application in microvascular anastomosis: comparative study of two free flap series. Microsurgery 29, 24–28 (2009).

    Article  PubMed  Google Scholar 

  15. Grindel, J.M., Jaworski, T., Piraner, O., Emanuele, R.M. & Balasubramanian, M. Distribution, metabolism, and excretion of a novel surface-active agent, purified poloxamer 188, in rats, dogs, and humans. J. Pharm. Sci. 91, 1936–1947 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Orringer, E.P. et al. Purified poloxamer 188 for treatment of acute vaso-occlusive crisis of sickle cell disease: A randomized controlled trial. J. Am. Med. Assoc. 286, 2099–2106 (2001).

    Article  CAS  Google Scholar 

  17. Serbest, G., Horwitz, J., Jost, M. & Barbee, K. Mechanisms of cell death and neuroprotection by poloxamer 188 after mechanical trauma. FASEB J. 20, 308–310 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Ricci, E.J., Lunardi, L.O., Nanclares, D.M. & Marchetti, J.M. Sustained release of lidocaine from poloxamer 407 gels. In. J. Pharm. 288, 235–244 (2005).

    CAS  Google Scholar 

  19. Escobar-Chávez, J.J. et al. Applications of thermo-reversible pluronic F-127 gels in pharmaceutical formulations. J. Pharm. Pharm. Sci. 9, 339–358 (2006).

    PubMed  Google Scholar 

  20. Grassi, G. et al. Rheological and mechanical properties of pluronic-alginate gels for drug-eluting stent coating. J. Control. Release 116, e85–e87 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Kohli, E., Han, H.Y., Zeman, A.D. & Vinogradov, S.V. Formulations of biodegradable Nanogel carriers with 5′-triphosphates of nucleoside analogs that display a reduced cytotoxicity and enhanced drug activity. J. Control. Release 121, 19–27 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Roques, C., Salmon, A., Fiszman, M.Y., Fattal, E. & Fromes, Y. Intrapericardial administration of novel DNA formulations based on thermosensitive poloxamer 407 gel. Int. J. Pharm. 331, 220–223 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Dumortier, G., Grossiord, J.L., Agnely, F. & Chaumeil, J.C. A review of poloxamer 407 pharmaceutical and pharmacological characteristics. Pharm. Res. 23, 2709–2728 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Xiong, X.Y., Tam, K.C. & Gan, L.H. Polymeric nanostructures for drug delivery applications based on Pluronic copolymer systems. J. Nanosci. Nanotechnol. 6, 2638–2650 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Ricci, E.J., Bentley, M.V., Farah, M., Bretas, R.E. & Marchetti, J.M. Rheological characterization of poloxamer 407 lidocaine hydrochloride gels. Eur. J. Pharm. Sci. 17, 161–167 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Cogger, V.C. et al. Hyperlipidemia and surfactants: the liver sieve is a link. Atherosclerosis 189, 273–281 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Johnston, T.P. et al. Potential downregulation of HMG-CoA reductase after prolonger administration of P-407 in C57BL/6 mice. J. Cardiovasc. Pharmacol. 34, 831–842 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Habal, S.M., Fitzpatrick, H.F. & Gree, G.E. Training in microvascular surgery. Surgery 81, 596–598 (1977).

    CAS  PubMed  Google Scholar 

  29. Hume, S.P., Marigold, J.C. & Michalowski, A. The effect of local hyperthermia on nonproliferative, compared with proliferative, epithelial cells of mouse intestinal mucosa. Radiat. Res. 94, 252–262 (1983).

    Article  CAS  PubMed  Google Scholar 

  30. Carnero-Alcázar, M. et al. Short-term and mid-term follow-up of sutureless surgery for postinfarction subacute free wall rupture. Interact. Cardiovasc. Thorac. Surg. 8, 619–623 (2009).

    Article  PubMed  Google Scholar 

  31. Ong, Y.S. et al. 2-Octylcynanoacrylate-assisted microvascular anastomosis in a rat model: long-term biomechanical properties and histological changes. Microsurgery 24, 304–308 (2004).

    Article  PubMed  Google Scholar 

  32. Buijsrogge, M.P., Verlaan, C.W., van Rijen, M.H., Grundeman, P.F. & Borst, C. Coronary end-to-side sleeve anastomosis using adhesive in off-pump bypass grafting in the pig. Ann. Thorac. Surg. 73, 1451–1456 (2002).

    Article  PubMed  Google Scholar 

  33. Kachhy, R.G., Kong, D.F., Honeycutt, E., Shaw, L.K. & Davis, R.D. Long-term outcomes of the symmetry vein graft anastomosis device: a matched case-controlled analysis. Circulation 114, I425–I429 (2006).

    Article  PubMed  Google Scholar 

  34. Apostolakis, E.E., Leivaditis, V.N. & Anagnostopoulos, C. Sutureless technique to support anastomosis during thoracic aorta replacement. J. Cardiothorac. Surg. 4, 66 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Setzen, G. & Williams, E.F. III. Tissue response to suture material implanted subcutaneously in a rabbit model. Plast. Reconstr. Surg. 100, 1788–1795 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Claude, O., Gregory, T., Montemagno, S., Bruneval, P. & Masmejean, E.H. Vascular microanastomosis in rat femoral arteries: experimental study comparing non-absorbable and absorbable sutures. J. Reconstr. Microsurg. 23, 87–91 (2007).

    Article  PubMed  Google Scholar 

  37. Bettmann, M.A. et al. Atherosclerotic Vascular Disease Conference: Writing Group VI: revascularization. Circulation 109, 2643–2650 (2004).

    Article  PubMed  Google Scholar 

  38. Faxon, D.P. et al. Atherosclerotic Vascular Disease Conference: Executive summary: Atherosclerotic Vascular Disease Conference proceeding for healthcare professionals from a special writing group of the American Heart Association. Circulation 109, 2595–2604 (2004).

    Article  PubMed  Google Scholar 

  39. Nabeyama, A. et al. xCT deficiency accelerates chemically induced tumorigenesis. Proc. Natl. Acad. Sci. USA 107, 6436–6441 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. Zarins for providing use of his laboratory burst strength apparatus. We also thank T. Doyle for assistance in small-animal imaging (Stanford Center for Innovation in In-Vivo Imaging) and Y. Park for expert technical assistance. This work was supported by a Stanford Bio-X Interdisciplinary Initiatives Research Award (to G.G.F. and G.C.G.).

Author information

Authors and Affiliations

Authors

Contributions

E.I.C. was responsible for experimental design and data analysis, and wrote the manuscript. M.G.G. designed experiments, analyzed data and wrote the manuscript. J.P.G. analyzed data and wrote the manuscript. C.D.H. designed experiments and analyzed data. S.E. performed imaging studies and analyzed data. C.T.R. and J.R. designed poloxamer experiments and analyzed data. K.-M.S. designed poloxamer experiments. O.J.A. was responsible for burst strength experimental design and data analysis. G.G.F. supervised poloxamer experiments and data analysis. M.T.L. provided ideas and wrote the manuscript. G.C.G. supervised all aspects of this work and wrote the manuscript.

Corresponding author

Correspondence to Geoffrey C Gurtner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figure 1 (PDF 435 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, E., Galvez, M., Glotzbach, J. et al. Vascular anastomosis using controlled phase transitions in poloxamer gels. Nat Med 17, 1147–1152 (2011). https://doi.org/10.1038/nm.2424

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2424

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing