Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Direct targeting of Sec23a by miR-200s influences cancer cell secretome and promotes metastatic colonization

Abstract

Although the role of miR-200s in regulating E-cadherin expression and epithelial-to-mesenchymal transition is well established, their influence on metastatic colonization remains controversial. Here we have used clinical and experimental models of breast cancer metastasis to discover a pro-metastatic role of miR-200s that goes beyond their regulation of E-cadherin and epithelial phenotype. Overexpression of miR-200s is associated with increased risk of metastasis in breast cancer and promotes metastatic colonization in mouse models, phenotypes that cannot be recapitulated by E-cadherin expression alone. Genomic and proteomic analyses revealed global shifts in gene expression upon miR-200 overexpression toward that of highly metastatic cells. miR-200s promote metastatic colonization partly through direct targeting of Sec23a, which mediates secretion of metastasis-suppressive proteins, including Igfbp4 and Tinagl1, as validated by functional and clinical correlation studies. Overall, these findings suggest a pleiotropic role of miR-200s in promoting metastatic colonization by influencing E-cadherin–dependent epithelial traits and Sec23a-mediated tumor cell secretome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: miR-200s are associated with poor prognosis in breast cancer.
Figure 2: Ectopic miR-200 expression enhances spontaneous metastasis and colonization of distant organs.
Figure 3: Ectopic miR-200 expression promotes global changes in gene expression.
Figure 4: Identification of putative miR-200 targets using MS.
Figure 5: Sec23a knockdown phenocopies miR-200s in inhibiting migration and promoting metastatic colonization.
Figure 6: Sec23a knockdown disrupts secretion of proteins that are correlated with suppression of clinical metastasis.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Thiery, J.P., Acloque, H., Huang, R.Y. & Nieto, M.A. Epithelial-mesenchymal transitions in development and disease. Cell 139, 871–890 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Thompson, E.W. & Williams, E.D. EMT and MET in carcinoma—clinical observations, regulatory pathways and new models. Clin. Exp. Metastasis 25, 591–592 (2008).

    Article  PubMed  Google Scholar 

  3. Yang, J. & Weinberg, R.A. Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev. Cell 14, 818–829 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Chaffer, C.L., Thompson, E.W. & Williams, E.D. Mesenchymal to epithelial transition in development and disease. Cells Tissues Organs 185, 7–19 (2007).

    Article  PubMed  Google Scholar 

  5. Jeschke, U. et al. Expression of E-cadherin in human ductal breast cancer carcinoma in situ, invasive carcinomas, their lymph node metastases, their distant metastases, carcinomas with recurrence and in recurrence. Anticancer Res. 27, 1969–1974 (2007).

    CAS  PubMed  Google Scholar 

  6. Park, D., Karesen, R., Axcrona, U., Noren, T. & Sauer, T. Expression pattern of adhesion molecules (E-cadherin, α-, β-, γ-catenin and claudin-7), their influence on survival in primary breast carcinoma, and their corresponding axillary lymph node metastasis. APMIS 115, 52–65 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Bartel, D.P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Esquela-Kerscher, A. & Slack, F.J. Oncomirs—microRNAs with a role in cancer. Nat. Rev. Cancer 6, 259–269 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Johnson, R. et al. A microRNA-based gene dysregulation pathway in Huntington's disease. Neurobiol. Dis. 29, 438–445 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Huang, Q. et al. The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat. Cell Biol. 10, 202–210 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Ma, L., Teruya-Feldstein, J. & Weinberg, R.A. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449, 682–688 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Ma, L. et al. miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat. Cell Biol. 12, 247–256 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Asangani, I.A. et al. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 27, 2128–2136 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Zhu, S., Si, M.L., Wu, H. & Mo, Y.Y. MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J. Biol. Chem. 282, 14328–14336 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Zhu, S. et al. MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res. 18, 350–359 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Tavazoie, S.F. et al. Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451, 147–152 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Valastyan, S. et al. A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell 137, 1032–1046 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Karres, J.S., Hilgers, V., Carrera, I., Treisman, J. & Cohen, S.M. The conserved microRNA miR-8 tunes atrophin levels to prevent neurodegeneration in Drosophila. Cell 131, 136–145 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Samavarchi-Tehrani, P. et al. Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming. Cell Stem Cell 7, 64–77 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Wellner, U. et al. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat. Cell Biol. 11, 1487–1495 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Shimono, Y. et al. Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell 138, 592–603 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Iliopoulos, D. et al. Loss of miR-200 inhibition of Suz12 leads to polycomb-mediated repression required for the formation and maintenance of cancer stem cells. Mol. Cell 39, 761–772 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schickel, R., Park, S.M., Murmann, A.E. & Peter, M.E. miR-200c regulates induction of apoptosis through CD95 by targeting FAP-1. Mol. Cell 38, 908–915 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cochrane, D.R., Howe, E.N., Spoelstra, N.S. & Richer, J.K. Loss of miR-200c: a marker of aggressiveness and chemoresistance in female reproductive cancers. J. Oncol. 2010, 821717 (2010).

    Article  PubMed  Google Scholar 

  25. Burk, U. et al. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep. 9, 582–589 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gregory, P.A. et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat. Cell Biol. 10, 593–601 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Korpal, M., Lee, E.S., Hu, G. & Kang, Y. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J. Biol. Chem. 283, 14910–14914 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Park, S.M., Gaur, A.B., Lengyel, E. & Peter, M.E. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 22, 894–907 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gibbons, D.L. et al. Contextual extracellular cues promote tumor cell EMT and metastasis by regulating miR-200 family expression. Genes Dev. 23, 2140–2151 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Olson, P. et al. MicroRNA dynamics in the stages of tumorigenesis correlate with hallmark capabilities of cancer. Genes Dev. 23, 2152–2165 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dykxhoorn, D.M. et al. miR-200 enhances mouse breast cancer cell colonization to form distant metastases. PLoS ONE 4, e7181 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Camps, C. et al. hsa-miR-210 Is induced by hypoxia and is an independent prognostic factor in breast cancer. Clin. Cancer Res. 14, 1340–1348 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Hudis, C.A. et al. Proposal for standardized definitions for efficacy end points in adjuvant breast cancer trials: the STEEP system. J. Clin. Oncol. 25, 2127–2132 (2007).

    Article  PubMed  Google Scholar 

  34. Nam, E.J. et al. MicroRNA expression profiles in serous ovarian carcinoma. Clin. Cancer Res. 14, 2690–2695 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Aslakson, C.J. & Miller, F.R. Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res. 52, 1399–1405 (1992).

    CAS  PubMed  Google Scholar 

  36. Yang, J. et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117, 927–939 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Lou, Y. et al. Epithelial-mesenchymal transition (EMT) is not sufficient for spontaneous murine breast cancer metastasis. Dev. Dyn. 237, 2755–2768 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Santner, S.J. et al. Malignant MCF10CA1 cell lines derived from premalignant human breast epithelial MCF10AT cells. Breast Cancer Res. Treat. 65, 101–110 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Chaffer, C.L. et al. Mesenchymal-to-epithelial transition facilitates bladder cancer metastasis: role of fibroblast growth factor receptor-2. Cancer Res. 66, 11271–11278 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Bracken, C.P. et al. A double-negative feedback loop between ZEB1–SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res. 68, 7846–7854 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Guo, H., Ingolia, N.T., Weissman, J.S. & Bartel, D.P. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466, 835–840 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Györffy, B. et al. An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Res. Treat. 123, 725–731 (2010).

    Article  PubMed  Google Scholar 

  43. Lang, M.R., Lapierre, L.A., Frotscher, M., Goldenring, J.R. & Knapik, E.W. Secretory COPII coat component Sec23a is essential for craniofacial chondrocyte maturation. Nat. Genet. 38, 1198–1203 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Saito, A. et al. Regulation of endoplasmic reticulum stress response by a BBF2H7-mediated Sec23a pathway is essential for chondrogenesis. Nat. Cell Biol. 11, 1197–1204 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Townley, A.K. et al. Efficient coupling of Sec23-Sec24 to Sec13-Sec31 drives COPII-dependent collagen secretion and is essential for normal craniofacial development. J. Cell Sci. 121, 3025–3034 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Huang, W., Sherman, B.T. & Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resources. Nat. Protoc. 4, 44–57 (2009).

    Article  CAS  Google Scholar 

  47. Wang, Y. et al. Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365, 671–679 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Minn, A.J. et al. Genes that mediate breast cancer metastasis to lung. Nature 436, 518–524 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. O'Donnell, K.A., Wentzel, E.A., Zeller, K.I., Dang, C.V. & Mendell, J.T. c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435, 839–843 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Yu, Z. et al. A cyclin D1/microRNA 17/20 regulatory feedback loop in control of breast cancer cell proliferation. J. Cell Biol. 182, 509–517 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yu, Z. et al. microRNA 17/20 inhibits cellular invasion and tumor metastasis in breast cancer by heterotypic signaling. Proc. Natl. Acad. Sci. USA 107, 8231–8236 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S. Kyne at the mass spectrometry core facility, D. Storton and J. Buckles at the microarray core facility, and E. Williams at the electron microscopy facility of Princeton University for expert technical advice and support, N. Sethi for insightful discussions and blinded verification of tumor counts, S.J. Parkinson for technical advice, and K. Socha for colony counting. We also thank E. Williams (Monash Institute of Medical Research) and F. Miller (Barbara Ann Karmanos Cancer Institute) for the TSU-PR1 and 4T1 cell line series, respectively. Y.K. is a Champalimaud Investigator and a Department of Defense Era of Hope Scholar Award recipient. This research was supported by grants from the US National Institutes of Health (1R01-CA141062) and the Brewster Foundation to Y.K. and from Cancer Research UK, Oxford NHS Biomedical Research Centre and Friends of Kennington Cancer Fund to A.L.H. M.K. and Y.H. are recipients of US Department of Defense predoctoral fellowships.

Author information

Authors and Affiliations

Authors

Contributions

M.K. and Y.K. designed experiments. M.K., B.J.E., T.C.-T. and Y.H. performed the experiments. F.M.B., T.I., L.M., J.R., D.A. and A.L.H. provided clinical samples and associated analyses. M.A.B., Z.K., H.G., Y.W., G.H. and B.A.G. contributed genomic and proteomic analyses. M.K. and Y.K. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Yibin Kang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Discussion, Supplementary Figures 1–9, Supplementary Tables 1–5 and Supplementary Methods (PDF 4453 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korpal, M., Ell, B., Buffa, F. et al. Direct targeting of Sec23a by miR-200s influences cancer cell secretome and promotes metastatic colonization. Nat Med 17, 1101–1108 (2011). https://doi.org/10.1038/nm.2401

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2401

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer