Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

HDAC6 inhibitors reverse axonal loss in a mouse model of mutant HSPB1–induced Charcot-Marie-Tooth disease

Abstract

Charcot-Marie-Tooth disease (CMT) is the most common inherited disorder of the peripheral nervous system. Mutations in the 27-kDa small heat-shock protein gene (HSPB1) cause axonal CMT or distal hereditary motor neuropathy (distal HMN). We developed and characterized transgenic mice expressing two different HSPB1 mutations (S135F and P182L) in neurons only. These mice showed all features of CMT or distal HMN dependent on the mutation. Expression of mutant HSPB1 decreased acetylated α-tubulin abundance and induced severe axonal transport deficits. An increase of α-tubulin acetylation induced by pharmacological inhibition of histone deacetylase 6 (HDAC6) corrected the axonal transport defects caused by HSPB1 mutations and rescued the CMT phenotype of symptomatic mutant HSPB1 mice. Our findings demonstrate the pathogenic role of α-tubulin deacetylation in mutant HSPB1–induced neuropathies and offer perspectives for using HDAC6 inhibitors as a therapeutic strategy for hereditary axonopathies.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Neuronal expression of human mutant HSPB1 in mice leads to progressive motor defects and decreased muscle strength.
Figure 2: Mice expressing mutant HSPB1 show steppage gait and clawed hindpaws.
Figure 3: Mutation-dependent pure motor or sensorimotor axonal loss and denervation of neuromuscular junctions in mice expressing mutant HSPB1.
Figure 4: Mutant HSPB1 mice show axonal transport defects and decreased acetylated tubulin levels.
Figure 5: HDAC6 inhibition rescues axonal transport defects and restores the CMT2 phenotype.
Figure 6: TSA or tubastatin A treatment leads to muscle reinnervation and rescues axonal transport defects.

References

  1. 1

    Barisic, N. et al. Charcot-Marie-Tooth disease: a clinico-genetic confrontation. Ann. Hum. Genet. 72, 416–441 (2008).

    CAS  Article  Google Scholar 

  2. 2

    Züchner, S. & Vance, J.M. Mechanisms of disease: a molecular genetic update on hereditary axonal neuropathies. Nat. Clin. Pract. Neurol. 2, 45–53 (2006).

    Article  Google Scholar 

  3. 3

    Ismailov, S.M. et al. A new locus for autosomal dominant Charcot-Marie-Tooth disease type 2 (CMT2F) maps to chromosome 7q11-q21. Eur. J. Hum. Genet. 9, 646–650 (2001).

    CAS  Article  Google Scholar 

  4. 4

    Evgrafov, O.V. et al. Mutant small heat-shock protein 27 causes axonal Charcot-Marie-Tooth disease and distal hereditary motor neuropathy. Nat. Genet. 36, 602–606 (2004).

    CAS  Article  Google Scholar 

  5. 5

    Arrigo, A.P. The cellular “networking” of mammalian Hsp27 and its functions in the control of protein folding, redox state and apoptosis. Adv. Exp. Med. Biol. 594, 14–26 (2007).

    Article  Google Scholar 

  6. 6

    Dierick, I., Irobi, J., de Jonghe, P. & Timmerman, V. Small heat shock proteins in inherited peripheral neuropathies. Ann. Med. 37, 413–422 (2005).

    CAS  Article  Google Scholar 

  7. 7

    Xanthoudakis, S. & Nicholson, D. Heat-shock proteins as death determinants. Nat. Cell Biol. 2, E163–E165 (2000).

    CAS  Article  Google Scholar 

  8. 8

    Houlden, H. et al. Mutations in the HSP27 (HSPB1) gene cause dominant, recessive, and sporadic distal HMN/CMT type 2. Neurology 71, 1660–1668 (2008).

    CAS  Article  Google Scholar 

  9. 9

    Ikeda, Y. et al. A clinical phenotype of distal hereditary motor neuronopathy type II with a novel HSPB1 mutation. J. Neurol. Sci. 277, 9–12 (2009).

    CAS  Article  Google Scholar 

  10. 10

    James, P.A., Rankin, J. & Talbot, K. Asymmetrical late onset motor neuropathy associated with a novel mutation in the small heat shock protein HSPB1 (HSP27). J. Neurol. Neurosurg. Psychiatry 79, 461–463 (2008).

    CAS  Article  Google Scholar 

  11. 11

    Kijima, K. et al. Small heat shock protein 27 mutation in a Japanese patient with distal hereditary motor neuropathy. J. Hum. Genet. 50, 473–476 (2005).

    Article  Google Scholar 

  12. 12

    Ackerley, S. et al. A mutation in the small heat-shock protein HSPB1 leading to distal hereditary motor neuronopathy disrupts neurofilament assembly and the axonal transport of specific cellular cargoes. Hum. Mol. Genet. 15, 347–354 (2006).

    CAS  Article  Google Scholar 

  13. 13

    Zhai, J., Lin, H., Julien, J. & Schlaepfer, W.W. Disruption of neurofilament network with aggregation of light neurofilament protein: a common pathway leading to motor neuron degeneration due to Charcot-Marie-Tooth disease–linked mutations in NFL and HSPB1. Hum. Mol. Genet. 16, 3103–3116 (2007).

    CAS  Article  Google Scholar 

  14. 14

    Aigner, L. et al. Overexpression of the neural growth-associated protein GAP-43 induces nerve sprouting in the adult nervous system of transgenic mice. Cell 83, 269–278 (1995).

    CAS  Article  Google Scholar 

  15. 15

    Caroni, P. Overexpression of growth-associated proteins in the neurons of adult transgenic mice. J. Neurosci. Methods 71, 3–9 (1997).

    CAS  Article  Google Scholar 

  16. 16

    Michailov, G.V. et al. Axonal neuregulin-1 regulates myelin sheath thickness. Science 304, 700–703 (2004).

    CAS  Article  Google Scholar 

  17. 17

    Hamers, F.P.T., Koopmans, G.C. & Joosten, E.A.J. CatWalk-assisted gait analysis in the assessment of spinal cord injury. J. Neurotrauma 23, 537–548 (2006).

    Article  Google Scholar 

  18. 18

    Vandeputte, C. et al. Automated quantitative gait analysis in animal models of movement disorders. BMC Neurosci. 11, 92 (2010).

    Article  Google Scholar 

  19. 19

    Hollenbeck, P.J. & Saxton, W.M. The axonal transport of mitochondria. J. Cell Sci. 118, 5411–5419 (2005).

    CAS  Article  Google Scholar 

  20. 20

    Westermann, S. & Weber, K. Post-translational modifications regulate microtubule function. Nat. Rev. Mol. Cell Biol. 4, 938–947 (2003).

    CAS  Article  Google Scholar 

  21. 21

    Chen, S., Owens, G.C., Makarenkova, H. & Edelman, D.B. HDAC6 regulates mitochondrial transport in hippocampal neurons. PLoS ONE 5, e10848 (2010).

    Article  Google Scholar 

  22. 22

    Gardiner, J., Barton, D., Marc, J. & Overall, R. Potential role of tubulin acetylation and microtubule-based protein trafficking in familial dysautonomia. Traffic 8, 1145–1149 (2007).

    CAS  Article  Google Scholar 

  23. 23

    Hempen, B. & Brion, J.P. Reduction of acetylated alpha-tubulin immunoreactivity in neurofibrillary tangle-bearing neurons in Alzheimer's disease. J. Neuropathol. Exp. Neurol. 55, 964–972 (1996).

    CAS  Article  Google Scholar 

  24. 24

    Hammond, J.W., Cai, D. & Verhey, K.J. Tubulin modifications and their cellular functions. Curr. Opin. Cell Biol. 20, 71–76 (2008).

    CAS  Article  Google Scholar 

  25. 25

    Hubbert, C. et al. HDAC6 is a microtubule-associated deacetylase. Nature 417, 455–458 (2002).

    CAS  Article  Google Scholar 

  26. 26

    Zhang, Y. et al. HDAC-6 interacts with and deacetylates tubulin and microtubules in vivo. EMBO J. 22, 1168–1179 (2003).

    CAS  Article  Google Scholar 

  27. 27

    Haggarty, S.J., Koeller, K.M., Wong, J.C., Grozinger, C.M. & Schreiber, S.L. Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proc. Natl. Acad. Sci. USA 100, 4389–4394 (2003).

    CAS  Article  Google Scholar 

  28. 28

    Butler, K.V. et al. Rational design and simple chemistry yield a superior, neuroprotective HDAC6 inhibitor, tubastatin A. J. Am. Chem. Soc. 132, 10842–10846 (2010).

    CAS  Article  Google Scholar 

  29. 29

    Dierick, I. et al. Relative contribution of mutations in genes for autosomal dominant distal hereditary motor neuropathies: a genotype-phenotype correlation study. Brain 131, 1217–1227 (2008).

    Article  Google Scholar 

  30. 30

    Detmer, S.A., Vande Velde, C., Cleveland, D.W. & Chan, D.C. Hindlimb gait defects due to motor axon loss and reduced distal muscles in a transgenic mouse model of Charcot-Marie-Tooth type 2A. Hum. Mol. Genet. 17, 367–375 (2008).

    CAS  Article  Google Scholar 

  31. 31

    Cartoni, R. et al. Expression of mitofusin 2(R94Q) in a transgenic mouse leads to Charcot-Marie-Tooth neuropathy type 2A. Brain 133, 1460–1469 (2010).

    Article  Google Scholar 

  32. 32

    Dequen, F. et al. Reversal of neuropathy phenotypes in conditional mouse model of Charcot-Marie-Tooth disease type 2E. Hum. Mol. Genet. 19, 2616–2629 (2010).

    CAS  Article  Google Scholar 

  33. 33

    Huang, L., Min, J., Masters, S., Mivechi, N.F. & Moskophidis, D. Insights into function and regulation of small heat shock protein 25 (HSPB1) in a mouse model with targeted gene disruption. Genesis 45, 487–501 (2007).

    CAS  Article  Google Scholar 

  34. 34

    Baloh, R.H., Schmidt, R.E., Pestronk, A. & Milbrandt, J. Altered axonal mitochondrial transport in the pathogenesis of Charcot-Marie-Tooth disease from mitofusin 2 mutations. J. Neurosci. 27, 422–430 (2007).

    CAS  Article  Google Scholar 

  35. 35

    Niemann, A., Ruegg, M., La Padula, V., Schenone, A. & Suter, U. Ganglioside-induced differentiation associated protein 1 is a regulator of the mitochondrial network: new implications for Charcot-Marie-Tooth disease. J. Cell Biol. 170, 1067–1078 (2005).

    CAS  Article  Google Scholar 

  36. 36

    de Brito, O.M. & Scorrano, L. Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456, 605–610 (2008).

    Article  Google Scholar 

  37. 37

    Misko, A., Jiang, S., Wegorzewska, I., Milbrandt, J. & Baloh, R.H. Mitofusin 2 is necessary for transport of axonal mitochondria and interacts with the Miro/Milton complex. J. Neurosci. 30, 4232–4240 (2010).

    CAS  Article  Google Scholar 

  38. 38

    Tradewell, M.L., Durham, H.D., Mushynski, W.E. & Gentil, B.J. Mitochondrial and axonal abnormalities precede disruption of the neurofilament network in a model of Charcot-Marie-Tooth disease type 2E and are prevented by heat shock proteins in a mutant-specific fashion. J. Neuropathol. Exp. Neurol. 68, 642–652 (2009).

    CAS  Article  Google Scholar 

  39. 39

    De Vos, K.J., Grierson, A.J., Ackerley, S. & Miller, C.C.J. Role of axonal transport in neurodegenerative diseases. Annu. Rev. Neurosci. 31, 151–173 (2008).

    CAS  Article  Google Scholar 

  40. 40

    Choudhary, C. et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325, 834–840 (2009).

    CAS  Article  Google Scholar 

  41. 41

    Friedman, J.R., Webster, B.M., Mastronarde, D.N., Verhey, K.J. & Voeltz, G.K. ER sliding dynamics and ER-mitochondrial contacts occur on acetylated microtubules. J. Cell Biol. 190, 363–375 (2010).

    CAS  Article  Google Scholar 

  42. 42

    Dompierre, J.P. et al. Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington's disease by increasing tubulin acetylation. J. Neurosci. 27, 3571–3583 (2007).

    CAS  Article  Google Scholar 

  43. 43

    Chuang, D.M., Leng, Y., Marinova, Z., Kim, H. & Chiu, C. Multiple roles of HDAC inhibition in neurodegenerative conditions. Trends Neurosci. 32, 591–601 (2009).

    CAS  Article  Google Scholar 

  44. 44

    Kazantsev, A.G. & Thompson, L.M. Therapeutic application of histone deacetylase inhibitors for central nervous system disorders. Nat. Rev. Drug Discov. 7, 854–868 (2008).

    CAS  Article  Google Scholar 

  45. 45

    Rivieccio, M.A. et al. HDAC6 is a target for protection and regeneration following injury in the nervous system. Proc. Natl. Acad. Sci. USA 106, 19599–19604 (2009).

    CAS  Article  Google Scholar 

  46. 46

    Dietz, K.C. & Casaccia, P. HDAC inhibitors and neurodegeneration: at the edge between protection and damage. Pharmacol. Res. 62, 11–17 (2010).

    CAS  Article  Google Scholar 

  47. 47

    Vanden Berghe, P., Hennig, G.W. & Smith, T.K. Characteristics of intermittent mitochondrial transport in guinea pig enteric nerve fibers. Am. J. Physiol. Gastrointest. Liver Physiol. 286, G671–G682 (2004).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank L. Almeida-Souza and S. Janssens for their constructive comments and the Molecular Small Animal Imaging Centre (MoSAIC, K.U. Leuven) for the use of the Catwalk system. We are grateful to B. Weynants and N. Hersmus for the technical assistance. We thank R. Mazitschek and J. Bradner (Dana-Farber Cancer Institute, Harvard Medical School) for kindly giving us tubacin. The research to create tubastatin A was supported by an American Chemical Society Fellowship and by the International Rett Syndrome Foundation. We thank J. H. Kalin for helping us with the creation of the HDAC6 homology model. This work was supported by grants from the Fund for Scientific Research Flanders (FWO-Vlaanderen), the University of Leuven (K.U. Leuven, GOA/12/014 and OT/10/046), the Belgian government (Interuniversity Attraction Poles, programme P6/43 of the Belgian Federal Science Policy Office), the Association Belge contre les Maladies neuro-Musculaires, the Association Française contre les Myopathies (projects 13169 and 14471), the Frick Foundation for Amyotrophic Lateral Sclerosis Research, the Muscular Dystrophy Association and the European Community's Health Seventh Framework Programme (FP7/2007-2013 under grant agreement 259867). C.d.Y. is supported by the Agency for Innovation by Science and Technology in Flanders. P.V.D. is a clinical researcher, and J.I. is a postdoctoral fellow of the FWO-Vlaanderen. W.R. is supported through the E. von Behring Chair for Neuromuscular and Neurodegenerative Disorders.

Author information

Affiliations

Authors

Contributions

C.d.Y. planned and performed all the experiments. J.K. developed the transgenic mice and did the initial characterization of the phenotype. D.M.C. provided technical support. P.V.D. assisted with the electrophysiological experiments, J.I. provided the original HSPB1 constructs, A.P.K. provided tubastatin A and P.V.B. helped with the axonal transport measurements. P.V.B., P.V.D., J.I., A.P.K., V.T. and W.R. provided ideas for the project and participated in writing the paper. L.V.D.B. planned and supervised the experiments. C.d.Y. and L.V.D.B. wrote the paper.

Corresponding author

Correspondence to Ludo Van Den Bosch.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Methods (PDF 1240 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

d'Ydewalle, C., Krishnan, J., Chiheb, D. et al. HDAC6 inhibitors reverse axonal loss in a mouse model of mutant HSPB1–induced Charcot-Marie-Tooth disease. Nat Med 17, 968–974 (2011). https://doi.org/10.1038/nm.2396

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing