Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Peptidoglycan recognition proteins kill bacteria by activating protein-sensing two-component systems

Abstract

Mammalian peptidoglycan recognition proteins (PGRPs), similar to antimicrobial lectins, bind the bacterial cell wall and kill bacteria through an unknown mechanism. We show that PGRPs enter the Gram-positive cell wall at the site of daughter cell separation during cell division. In Bacillus subtilis, PGRPs activate the CssR-CssS two-component system that detects and disposes of misfolded proteins that are usually exported out of bacterial cells. This activation results in membrane depolarization, cessation of intracellular peptidoglycan, protein, RNA and DNA synthesis, and production of hydroxyl radicals, which are responsible for bacterial death. PGRPs also bind the outer membrane of Escherichia coli and activate the functionally homologous CpxA-CpxR two-component system, which kills the bacteria. We exclude other potential bactericidal mechanisms, including inhibition of extracellular peptidoglycan synthesis, hydrolysis of peptidoglycan and membrane permeabilization. Thus, we reveal a previously unknown mechanism by which innate immunity proteins that bind the cell wall or outer membrane exploit the bacterial stress defense response to kill bacteria.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PGRPs inhibit an intracellular step in peptidoglycan synthesis and localize to the newly formed cell separation site.
Figure 2: PGRPs inhibit protein, RNA and DNA synthesis.
Figure 3: PGRPs induce membrane depolarization, [OH] formation and HtrA expression through the CssR-CssS two-component system, and [OH] is responsible for PGRP-induced killing.
Figure 4: PGRPs kill B. subtilis through the CssR-CssS two-component system.
Figure 5: PGRPs kill E. coli through the CpxA-CpxR two-component system and bind the entire outer membrane.
Figure 6: Mammalian PGRPs exploit bacterial defense mechanism to kill bacteria.

Similar content being viewed by others

References

  1. Cash, H.L., Whitham, C.V., Behrendt, C.L. & Hooper, L.V. Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science 313, 1126–1130 (2006).

    Article  CAS  Google Scholar 

  2. Stowell, S.R. et al. Innate immune lectins kill bacteria expressing blood group antigen. Nat. Med. 16, 295–301 (2010).

    Article  CAS  Google Scholar 

  3. Dziarski, R. & Gupta, D. The peptidoglycan recognition proteins (PGRPs). Genome Biol. 7, 232 (2006).

    Article  Google Scholar 

  4. Royet, J. & Dziarski, R. Peptidoglycan recognition proteins: pleiotropic sensors and effectors of antimicrobial defenses. Nat. Rev. Microbiol. 5, 264–277 (2007).

    Article  CAS  Google Scholar 

  5. Dziarski, R. & Gupta, D. Mammalian PGRPs: novel antibacterial proteins. Cell. Microbiol. 8, 1059–1069 (2006).

    Article  CAS  Google Scholar 

  6. Kang, D., Liu, G., Lundstrom, A., Gelius, E. & Steiner, H. A peptidoglycan recognition protein in innate immunity conserved from insects to humans. Proc. Natl. Acad. Sci. USA 95, 10078–10082 (1998).

    Article  CAS  Google Scholar 

  7. Liu, C., Xu, Z., Gupta, D. & Dziarski, R. Peptidoglycan recognition proteins: a novel family of four human innate immunity pattern recognition molecules. J. Biol. Chem. 276, 34686–34694 (2001).

    Article  CAS  Google Scholar 

  8. Tydell, C.C., Yount, N., Tran, D., Yuan, J. & Selsted, M. Isolation, characterization and antimicrobial properties of bovine oligosaccharide-binding protein. J. Biol. Chem. 277, 19658–19664 (2002).

    Article  CAS  Google Scholar 

  9. Dziarski, R., Platt, K.A., Gelius, E., Steiner, H. & Gupta, D. Defect in neutrophil killing and increased susceptibility to infection with non-pathogenic Gram-positive bacteria in peptidoglycan recognition protein-S (PGRP-S)-deficient mice. Blood 102, 689–697 (2003).

    Article  CAS  Google Scholar 

  10. Lu, X. et al. Peptidoglycan recognition proteins are a new class of human bactericidal proteins. J. Biol. Chem. 281, 5895–5907 (2006).

    Article  CAS  Google Scholar 

  11. Tydell, C.C., Yuan, J., Tran, P. & Selsted, M.E. Bovine peptidoglycan recognition protein-S: antimicrobial activity, localization, secretion and binding properties. J. Immunol. 176, 1154–1162 (2006).

    Article  CAS  Google Scholar 

  12. Wang, M. et al. Human peptidoglycan recognition proteins require zinc to kill both Gram-positive and Gram-negative bacteria and are synergistic with antibacterial peptides. J. Immunol. 178, 3116–3125 (2007).

    Article  CAS  Google Scholar 

  13. Gelius, E., Persson, C., Karlsson, J. & Steiner, H. A mammalian peptidoglycan recognition protein with N-acetylmuramoyl-L-alanine amidase activity. Biochem. Biophys. Res. Commun. 306, 988–994 (2003).

    Article  CAS  Google Scholar 

  14. Wang, Z.-M. et al. Human peptidoglycan recognition protein-L is an N-acetylmuramoyl-L-alanine amidase. J. Biol. Chem. 278, 49044–49052 (2003).

    Article  CAS  Google Scholar 

  15. Cho, S. et al. Structural insights into the bactericidal mechanism of human peptidoglycan recognition proteins. Proc. Natl. Acad. Sci. USA 104, 8761–8766 (2007).

    Article  CAS  Google Scholar 

  16. Hancock, R.E.W. & Sahl, H.-G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol. 24, 1551–1557 (2006).

    Article  CAS  Google Scholar 

  17. Peschel, A. & Sahl, H.-G. The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat. Rev. Microbiol. 4, 529–536 (2006).

    Article  CAS  Google Scholar 

  18. Fukushima, T. et al. A new D,L-endopeptidase gene product, YojL (renamed CwlS), plays a role in cell separation with LytE and LytF in Bacillus subtilis. J. Bacteriol. 188, 5541–5550 (2006).

    Article  CAS  Google Scholar 

  19. Yamamoto, H., Kurosawa, S. & Sekiguchi, J. Localization of the vegetative cell wall hydrolases LytC, LytE and LytF on the Bacillus subtilis cell surface and stability of these enzymes to cell wall-bound or extracellular proteases. J. Bacteriol. 185, 6666–6677 (2003).

    Article  CAS  Google Scholar 

  20. Blackman, S.A., Smith, T.J. & Foster, S.J. The role of autolysins during vegetative growth of Bacillus subtilis 168. Microbiology 144, 73–82 (1998).

    Article  CAS  Google Scholar 

  21. Kohanski, M.A., Dwyer, D.J., Hayete, B., Lawrence, C.A. & Collins, J.J. A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130, 797–810 (2007).

    Article  CAS  Google Scholar 

  22. Hyyryläinen, H.L. et al. A novel two-component regulatory system in Bacillus subtilis for the survival of severe secretion stress. Mol. Microbiol. 41, 1159–1172 (2001).

    Article  Google Scholar 

  23. Kohanski, M.A., Dwyer, D.J., Wierzbowski, J., Cottarel, G. & Collins, J.J. Mistranslation of membrane proteins and two-component system activation trigger antibiotic-mediated cell death. Cell 135, 679–690 (2008).

    Article  CAS  Google Scholar 

  24. DiGiuseppe, P.A. & Silhavy, T.J. Signal detection and target gene induction by the CpxRA two-component system. J. Bacteriol. 185, 2432–2440 (2003).

    Article  CAS  Google Scholar 

  25. Danese, P.N., Snyder, W.B., Cosma, C.L., Davis, L.J. & Silhavy, T.J. The Cpx two-component signal transduction pathway of Escherichia coli regulates transcription of the gene specifying the stress-inducible periplasmic protease, DegP. Genes Dev. 9, 387–398 (1995).

    Article  CAS  Google Scholar 

  26. Nash, J.A., Ballard, T.N., Weaver, T.E. & Akinbi, H.T. The peptidoglycan-degrading property of lysozyme is not required for bactericidal activity in vivo. J. Immunol. 177, 519–526 (2006).

    Article  CAS  Google Scholar 

  27. Darmon, E. et al. A novel class of heat and secretion stress-responsive genes is controlled by the autoregulated CssRS two-component system of Bacillus subtilis. J. Bacteriol. 184, 5661–5671 (2002).

    Article  CAS  Google Scholar 

  28. Westers, H. et al. The CssRS two-component regulatory system controls a general secretion stress response in Bacillus subtilis. FEBS J. 273, 3816–3827 (2006).

    Article  CAS  Google Scholar 

  29. Lim, J.H. et al. Structural basis for preferential recognition of diaminopimelic acid–type peptidoglycan by a subset of peptidoglycan recognition proteins. J. Biol. Chem. 281, 8286–8295 (2006).

    Article  CAS  Google Scholar 

  30. Touhami, A., Jericho, M.H. & Beveridge, T.J. Atomic force microscopy of cell growth and division in Staphylococcus aureus. J. Bacteriol. 186, 3286–3295 (2004).

    Article  CAS  Google Scholar 

  31. Yamada, S. et al. An autolysin ring associated with cell separation of Staphylococcus aureus. J. Bacteriol. 178, 1565–1571 (1996).

    Article  CAS  Google Scholar 

  32. Chang, C.I., Chelliah, Y., Borek, D., Mengin-Lecreulx, D. & Deisenhofer, J. Structure of tracheal cytotoxin in complex with a heterodimeric pattern-recognition receptor. Science 311, 1761–1764 (2006).

    Article  CAS  Google Scholar 

  33. Kim, M.-S., Byun, M. & Oh, B.-H. Crystal structure of peptidoglycan recognition protein LB from Drosophila melanogaster. Nat. Immunol. 4, 787–793 (2003).

    Article  CAS  Google Scholar 

  34. Liu, C., Gelius, E., Liu, G., Steiner, H. & Dziarski, R. Mammalian peptidoglycan recognition protein binds peptidoglycan with high affinity, is expressed in neutrophils and inhibits bacterial growth. J. Biol. Chem. 275, 24490–24499 (2000).

    Article  CAS  Google Scholar 

  35. Dwyer, D.J., Kohanski, M.A., Hayete, B. & Collins, J.J. Gyrase inhibitors induce an oxidative damage cellular death pathway in Escherichia coli. Mol. Syst. Biol. 3, 91 (2007).

    Article  Google Scholar 

  36. Meijer, W.J. et al. The endogenous Bacillus subtilis (natto) plasmids pTA1015 and pTA1040 contain signal peptidase-encoding genes: identification of a new structural module on cryptic plasmids. Mol. Microbiol. 17, 621–631 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to J.M. van Dijl, O.P. Kuipers and V.P. Kontinen and their associates J. Zweers and S. Holsappel (University of Groningen and National Institute of Health and Welfare Finland), J. Sekiguchi (Shinshu University) and S.J. Foster (University of Sheffield) for providing B. subtilis mutants; to J.J. Collins and M.A. Kohanski (Boston University) for providing E. coli mutants; to J.M. van Dijl and his associates T. Kouwen and M. Sibbald (University of Groningen) for the pGDL48 plasmid and its sequence; to M. Wang for analyzing samples by mass spectrometry; and to Huvepharma for providing moenomycin. This work was supported by the US Public Health Service grants from the US National Institutes of Health AI073290 and AI028797 to R.D. and D.G. and GM061761 to G.-J.B.

Author information

Authors and Affiliations

Authors

Contributions

D.R.K., M.W., D.G. and R.D. designed the experiments, D.R.K., M.W. and R.D. performed the experiments, L.-H.L. and D.R.K. obtained and purified the proteins, G.-J.B. synthesized muramyl peptides, and R.D. wrote the manuscript.

Corresponding author

Correspondence to Roman Dziarski.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8, Supplementary Results, Supplementary Discussion, Supplementary Methods and Supplementary Table 1 (PDF 1852 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kashyap, D., Wang, M., Liu, LH. et al. Peptidoglycan recognition proteins kill bacteria by activating protein-sensing two-component systems. Nat Med 17, 676–683 (2011). https://doi.org/10.1038/nm.2357

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2357

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing