Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The tumor necrosis factor family member LIGHT is a target for asthmatic airway remodeling

Abstract

Individuals with chronic asthma show a progressive decline in lung function that is thought to be due to structural remodeling of the airways characterized by subepithelial fibrosis and smooth muscle hyperplasia. Here we show that the tumor necrosis factor (TNF) family member LIGHT is expressed on lung inflammatory cells after allergen exposure. Pharmacological inhibition of LIGHT using a fusion protein between the IgG Fc domain and lymphotoxin β receptor (LTβR) reduces lung fibrosis, smooth muscle hyperplasia and airway hyperresponsiveness in mouse models of chronic asthma, despite having little effect on airway eosinophilia. LIGHT-deficient mice also show a similar impairment in fibrosis and smooth muscle accumulation. Blockade of LIGHT suppresses expression of lung transforming growth factor-β (TGF-β) and interleukin-13 (IL-13), cytokines implicated in remodeling in humans, whereas exogenous administration of LIGHT to the airways induces fibrosis and smooth muscle hyperplasia, Thus, LIGHT may be targeted to prevent asthma-related airway remodeling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Blockade of LIGHT or LTαβ inhibits airway remodeling and AHR induced by HDM.
Figure 2: LIGHT-deficient mice are resistant to airway remodeling induced by HDM.
Figure 3: LIGHT controls lung TGF-β1 production and accumulation of LAP+ macrophages.
Figure 4: LTβR stimulation promotes fibrosis and TGF-β production by lung macrophages.
Figure 5: LIGHT-induced airway remodeling is in part dependent on TGF-β.
Figure 6: LIGHT promotes IL-13 production by lung eosinophils.

Similar content being viewed by others

References

  1. Boulet, L.P. et al. Airway hyperresponsiveness, inflammation and subepithelial collagen deposition in recently diagnosed versus long-standing mild asthma. Influence of inhaled corticosteroids. Am. J. Respir. Crit. Care Med. 162, 1308–1313 (2000).

    Article  CAS  Google Scholar 

  2. Chakir, J. et al. Airway remodeling-associated mediators in moderate to severe asthma: effect of steroids on TGF-β, IL-11, IL-17 and type I and type III collagen expression. J. Allergy Clin. Immunol. 111, 1293–1298 (2003).

    Article  CAS  Google Scholar 

  3. Pepe, C. et al. Differences in airway remodeling between subjects with severe and moderate asthma. J. Allergy Clin. Immunol. 116, 544–549 (2005).

    Article  Google Scholar 

  4. Wills-Karp, M. Interleukin-13 in asthma pathogenesis. Immunol. Rev. 202, 175–190 (2004).

    Article  CAS  Google Scholar 

  5. Halwani, R., Al-Muhsen, S., Al-Jahdali, H. & Hamid, Q. Role of transforming growth factor-β in airway remodeling in asthma. Am. J. Respir. Cell Mol. Biol. 44, 127–133 (2011).

    Article  CAS  Google Scholar 

  6. Mauri, D.N. et al. LIGHT, a new member of the TNF superfamily, and lymphotoxin α are ligands for herpesvirus entry mediator. Immunity 8, 21–30 (1998).

    Article  CAS  Google Scholar 

  7. Ware, C.F. Network communications: lymphotoxins, LIGHT and TNF. Annu. Rev. Immunol. 23, 787–819 (2005).

    Article  CAS  Google Scholar 

  8. Salek-Ardakani, S. et al. OX40 (CD134) controls memory T helper 2 cells that drive lung inflammation. J. Exp. Med. 198, 315–324 (2003).

    Article  CAS  Google Scholar 

  9. Seshasayee, D. et al. In vivo blockade of OX40 ligand inhibits thymic stromal lymphopoietin driven atopic inflammation. J. Clin. Invest. 117, 3868–3878 (2007).

    Article  CAS  Google Scholar 

  10. Berry, M.A. et al. Evidence of a role of tumor necrosis factor α in refractory asthma. N. Engl. J. Med. 354, 697–708 (2006).

    Article  CAS  Google Scholar 

  11. Hastie, A.T. et al. Analyses of asthma severity phenotypes and inflammatory proteins in subjects stratified by sputum granulocytes. J. Allergy Clin. Immunol. 125, 1028–1036.e13 (2010).

    Article  CAS  Google Scholar 

  12. Hammad, H. et al. House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells. Nat. Med. 15, 410–416 (2009).

    Article  CAS  Google Scholar 

  13. De Trez, C. et al. The inhibitory HVEM-BTLA pathway counter regulates lymphotoxin receptor signaling to achieve homeostasis of dendritic cells. J. Immunol. 180, 238–248 (2008).

    Article  CAS  Google Scholar 

  14. Cho, J.Y. et al. Inhibition of airway remodeling in IL-5–deficient mice. J. Clin. Invest. 113, 551–560 (2004).

    Article  CAS  Google Scholar 

  15. Southam, D.S., Ellis, R., Wattie, J. & Inman, M.D. Components of airway hyperresponsiveness and their associations with inflammation and remodeling in mice. J. Allergy Clin. Immunol. 119, 848–854 (2007).

    Article  CAS  Google Scholar 

  16. Scheu, S. et al. Targeted disruption of LIGHT causes defects in costimulatory T cell activation and reveals cooperation with lymphotoxin β in mesenteric lymph node genesis. J. Exp. Med. 195, 1613–1624 (2002).

    Article  CAS  Google Scholar 

  17. Doerner, A.M. & Zuraw, B.L. TGF-β1 induced epithelial to mesenchymal transition (EMT) in human bronchial epithelial cells is enhanced by IL-1β but not abrogated by corticosteroids. Respir. Res. 10, 100 (2009).

    Article  Google Scholar 

  18. Zasłona, Z. et al. Transcriptome profiling of primary murine monocytes, lung macrophages and lung dendritic cells reveals a distinct expression of genes involved in cell trafficking. Respir. Res. 10, 2 (2009).

    Article  Google Scholar 

  19. Stevens, W.W., Kim, T.S., Pujanauski, L.M., Hao, X. & Braciale, T.J. Detection and quantitation of eosinophils in the murine respiratory tract by flow cytometry. J. Immunol. Methods 327, 63–74 (2007).

    Article  CAS  Google Scholar 

  20. Bhavsar, P. et al. Relative corticosteroid insensitivity of alveolar macrophages in severe asthma compared with non-severe asthma. Thorax 63, 784–790 (2008).

    Article  CAS  Google Scholar 

  21. Tetley, T.D. Macrophages and the pathogenesis of COPD. Chest 121, 156S–159S (2002).

    Article  CAS  Google Scholar 

  22. Bogaert, P., Tournoy, K.G., Naessens, T. & Grooten, J. Where asthma and hypersensitivity pneumonitis meet and differ: noneosinophilic severe asthma. Am. J. Pathol. 174, 3–13 (2009).

    Article  CAS  Google Scholar 

  23. Khalil, N., Whitman, C., Zuo, L., Danielpour, D. & Greenberg, A. Regulation of alveolar macrophage transforming growth factor-β secretion by corticosteroids in bleomycin-induced pulmonary inflammation in the rat. J. Clin. Invest. 92, 1812–1818 (1993).

    Article  CAS  Google Scholar 

  24. Ochi, H. et al. Oral CD3-specific antibody suppresses autoimmune encephalomyelitis by inducing CD4+ CD25 LAP+ T cells. Nat. Med. 12, 627–635 (2006).

    Article  CAS  Google Scholar 

  25. Berger, P. et al. Tryptase-stimulated human airway smooth muscle cells induce cytokine synthesis and mast cell chemotaxis. FASEB J. 17, 2139–2141 (2003).

    Article  CAS  Google Scholar 

  26. Gandhi, R., Anderson, D.E. & Weiner, H.L. Cutting Edge: Immature human dendritic cells express latency-associated peptide and inhibit T cell activation in a TGF-β–dependent manner. J. Immunol. 178, 4017–4021 (2007).

    Article  CAS  Google Scholar 

  27. Burton, O.T. et al. Roles for TGF-β and programmed cell death 1 ligand 1 in regulatory T cell expansion and diabetes suppression by zymosan in nonobese diabetic mice. J. Immunol. 185, 2754–2762 (2010).

    Article  CAS  Google Scholar 

  28. Kaminska, M. et al. Airway remodeling in subjects with severe asthma with or without chronic persistent airflow obstruction. J. Allergy Clin. Immunol. 124, 45–51.e4 (2009).

    Article  Google Scholar 

  29. Woodruff, P.G. et al. T-helper type 2–driven inflammation defines major subphenotypes of asthma. Am. J. Respir. Crit. Care Med. 180, 388–395 (2009).

    Article  CAS  Google Scholar 

  30. Booth, B.W., Sandifer, T., Martin, E.L. & Martin, L.D. IL-13–induced proliferation of airway epithelial cells: mediation by intracellular growth factor mobilization and ADAM17. Respir. Res. 8, 51 (2007).

    Article  Google Scholar 

  31. Saito, A., Okazaki, H., Sugawara, I., Yamamoto, K. & Takizawa, H. Potential action of IL-4 and IL-13 as fibrogenic factors on lung fibroblasts in vitro. Int. Arch. Allergy Immunol. 132, 168–176 (2003).

    Article  CAS  Google Scholar 

  32. Zhou, X. et al. Interleukin-13 augments transforming growth factor-β1–induced tissue inhibitor of metalloproteinase-1 expression in primary human airway fibroblasts. Am. J. Physiol. Cell Physiol. 288, C435–C442 (2005).

    Article  CAS  Google Scholar 

  33. Espinosa, K., Bosse, Y., Stankova, J. & Rola-Pleszczynski, M. CysLT1 receptor upregulation by TGF-β and IL-13 is associated with bronchial smooth muscle cell proliferation in response to LTD4. J. Allergy Clin. Immunol. 111, 1032–1040 (2003).

    Article  CAS  Google Scholar 

  34. Heo, S.K. et al. LIGHT enhances the bactericidal activity of human monocytes and neutrophils via HVEM. J. Leukoc. Biol. 79, 330–338 (2006).

    Article  CAS  Google Scholar 

  35. Luzina, I.G. et al. Occurrence of an activated, profibrotic pattern of gene expression in lung CD8+ T cells from scleroderma patients. Arthritis Rheum. 48, 2262–2274 (2003).

    Article  CAS  Google Scholar 

  36. Lee, W.H. et al. Tumor necrosis factor receptor superfamily 14 is involved in atherogenesis by inducing proinflammatory cytokines and matrix metalloproteinases. Arterioscler. Thromb. Vasc. Biol. 21, 2004–2010 (2001).

    Article  CAS  Google Scholar 

  37. Kelly, E.A. & Jarjour, N.N. Role of matrix metalloproteinases in asthma. Curr. Opin. Pulm. Med. 9, 28–33 (2003).

    Article  CAS  Google Scholar 

  38. Lim, D.H. et al. Reduced peribronchial fibrosis in allergen-challenged MMP-9–deficient mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 291, L265–L271 (2006).

    Article  CAS  Google Scholar 

  39. Fattouh, R. et al. Transforming growth factor-β regulates house dust mite–induced allergic airway inflammation but not airway remodeling. Am. J. Respir. Crit. Care Med. 177, 593–603 (2008).

    Article  CAS  Google Scholar 

  40. Le, A.V. et al. Inhibition of allergen-induced airway remodeling in Smad 3–deficient mice. J. Immunol. 178, 7310–7316 (2007).

    Article  CAS  Google Scholar 

  41. McMillan, S.J., Xanthou, G. & Lloyd, C.M. Manipulation of allergen-induced airway remodeling by treatment with anti–TGF-β antibody: effect on the Smad signaling pathway. J. Immunol. 174, 5774–5780 (2005).

    Article  CAS  Google Scholar 

  42. Tomlinson, K.L., Davies, G.C., Sutton, D.J. & Palframan, R.T. Neutralisation of interleukin-13 in mice prevents airway pathology caused by chronic exposure to house dust mite. PLoS One 5, e13136 (2010).

    Article  Google Scholar 

  43. Blease, K. et al. Therapeutic effect of IL-13 immunoneutralization during chronic experimental fungal asthma. J. Immunol. 166, 5219–5224 (2001).

    Article  CAS  Google Scholar 

  44. Yang, G. et al. Anti–IL-13 monoclonal antibody inhibits airway hyperresponsiveness, inflammation and airway remodeling. Cytokine 28, 224–232 (2004).

    Article  CAS  Google Scholar 

  45. Flood-Page, P. et al. Anti–IL-5 treatment reduces deposition of ECM proteins in the bronchial subepithelial basement membrane of mild atopic asthmatics. J. Clin. Invest. 112, 1029–1036 (2003).

    Article  CAS  Google Scholar 

  46. Humbles, A.A. et al. A critical role for eosinophils in allergic airways remodeling. Science 305, 1776–1779 (2004).

    Article  CAS  Google Scholar 

  47. Fattouh, R. et al. Eosinophils are dispensable for allergic remodeling and immunity in a model of house dust mite–induced airway disease. Am. J. Respir. Crit. Care Med. 283, 179–188 (2011).

    Article  Google Scholar 

  48. Wei, C.Y., Chou, Y.H., Ho, F.M., Hsieh, S.L. & Lin, W.W. Signaling pathways of LIGHT induced macrophage migration and vascular smooth muscle cell proliferation. J. Cell. Physiol. 209, 735–743 (2006).

    Article  CAS  Google Scholar 

  49. Hikichi, Y. et al. LIGHT, a member of the TNF superfamily, induces morphological changes and delays proliferation in the human rhabdomyosarcoma cell line RD. Biochem. Biophys. Res. Commun. 289, 670–677 (2001).

    Article  CAS  Google Scholar 

  50. Boussaud, V., Soler, P., Moreau, J., Goodwin, R.G. & Hance, A.J. Expression of three members of the TNF-R family of receptors (4–1BB, lymphotoxin-β receptor and Fas) in human lung. Eur. Respir. J. 12, 926–931 (1998).

    Article  CAS  Google Scholar 

  51. DiGiovanni, F.A. et al. Concurrent dual allergen exposure and its effects on airway hyperresponsiveness, inflammation and remodeling in mice. Dis. Model Mech. 2, 275–282 (2009).

    Article  CAS  Google Scholar 

  52. Johnson, J.R. et al. Continuous exposure to house dust mite elicits chronic airway inflammation and structural remodeling. Am. J. Respir. Crit. Care Med. 169, 378–385 (2004).

    Article  Google Scholar 

  53. Jeffery, P.K. et al. Effects of treatment on airway inflammation and thickening of basement membrane reticular collagen in asthma. A quantitative light and electron microscopic study. Am. Rev. Respir. Dis. 145, 890–899 (1992).

    Article  CAS  Google Scholar 

  54. Doherty, T.A., Soroosh, P., Broide, D.H. & Croft, M. CD4+ cells are required for chronic eosinophilic lung inflammation but not airway remodeling. Am. J. Physiol. Lung Cell. Mol. Physiol. 296, L229–L235 (2009).

    Article  CAS  Google Scholar 

  55. Yang, M. et al. Inhibition of arginase I activity by RNA interference attenuates IL-13–induced airways hyperresponsiveness. J. Immunol. 177, 5595–5603 (2006).

    Article  CAS  Google Scholar 

  56. Kitani, A. et al. Treatment of experimental (trinitrobenzene sulfonic acid) colitis by intranasal administration of transforming growth factor (TGF)-β1 plasmid: TGF-β1–mediated suppression of T helper cell type 1 response occurs by interleukin (IL)-10 induction and IL-12 receptor β2 chain downregulation. J. Exp. Med. 192, 41–52 (2000).

    Article  CAS  Google Scholar 

  57. López, E. et al. Inhibition of chronic airway inflammation and remodeling by galectin-3 gene therapy in a murine model. J. Immunol. 176, 1943–1950 (2006).

    Article  Google Scholar 

  58. Cho, J.Y. et al. Immunostimulatory DNA inhibits transforming growth factor-β expression and airway remodeling. Am. J. Respir. Cell Mol. Biol. 30, 651–661 (2004).

    Article  CAS  Google Scholar 

  59. Haeberle, H.A. et al. Inducible expression of inflammatory chemokines in respiratory syncytial virus-infected mice: role of MIP-1α in lung pathology. J. Virol. 75, 878–890 (2001).

    Article  CAS  Google Scholar 

  60. Summers-DeLuca, L.E. et al. Expression of lymphotoxin-αβ on antigen-specific T cells is required for DC function. J. Exp. Med. 204, 1071–1081 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Meilan, Y. Adams, X. Tang and M. Macauley for technical assistance and the UCSD histology core for lung section processing and staining. Antibody to LTβ BBF6 was kindly provided by J. Browning, Biogen Idec. This work was supported by US National Institutes of Health (NIH) grant AI070535 to M.C., a fellowship from the American Academy of Asthma, Allergy and Immunology, UCSD Clinical and Translational Research Institute and NIH grant 1K08AI080938-01A1 award to T.A.D. and NIH grants R37AI068033 and AI067890 to C.F.W. This is manuscript number 1285 of the La Jolla Institute for Allergy and Immunology.

Author information

Authors and Affiliations

Authors

Contributions

T.A.D. and P.S. contributed to animal antigen administration, surgery, data collection, analysis and manuscript writing for all studies; S.F. and J.Y.C. contributed to immunostaining and data analysis; N.K. contributed to remodeling and cytokine data collection and analysis; P.R. contributed to airway hyper-responsiveness testing and analysis; P.S.N. produced plasmids, LTβR-F and antibody to LTβR and contributed to experimental design; H.C. contributed to cytokine data collection; S.S. and K.P. developed mutant mice; B.L.Z. contributed to experimental design; C.F.W. contributed to experimental design and reagent production; D.H.B. contributed to experimental design and remodeling data collection; M.C. contributed to experimental design, data analysis and manuscript writing for all studies.

Corresponding author

Correspondence to Michael Croft.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 and Supplementary Methods (PDF 2642 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doherty, T., Soroosh, P., Khorram, N. et al. The tumor necrosis factor family member LIGHT is a target for asthmatic airway remodeling. Nat Med 17, 596–603 (2011). https://doi.org/10.1038/nm.2356

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2356

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing