Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

The transcription factor cyclic AMP–responsive element–binding protein H regulates triglyceride metabolism

Abstract

Here we report that the transcription factor cyclic AMP–responsive element–binding protein H (CREB-H, encoded by CREB3L3) is required for the maintenance of normal plasma triglyceride concentrations. CREB-H–deficient mice showed hypertriglyceridemia secondary to inefficient triglyceride clearance catalyzed by lipoprotein lipase (Lpl), partly due to defective expression of the Lpl coactivators Apoc2, Apoa4 and Apoa5 (encoding apolipoproteins C2, A4 and A5, respectively) and concurrent augmentation of the Lpl inhibitor Apoc3. We identified multiple nonsynonymous mutations in CREB3L3 that produced hypomorphic or nonfunctional CREB-H protein in humans with extreme hypertriglyceridemia, implying a crucial role for CREB-H in human triglyceride metabolism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Creb3l3−/− mice show hypertriglyceridemia secondary to inefficient triglyceride clearance catalyzed by Lpl.
Figure 2: CREB-H controls genes involved in triglyceride metabolism, and mutations of CREB3L3 are associated with human hypertriglyceridemia.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Luebke-Wheeler, J. et al. Hepatology 48, 1242–1250 (2008).

    Google Scholar 

  2. Omori, Y. et al. Nucleic Acids Res. 29, 2154–2162 (2001).

    Google Scholar 

  3. Zhang, K. et al. Cell 124, 587–599 (2006).

    Google Scholar 

  4. Bailey, D., Barreca, C. & O'Hare, P. Traffic 8, 1796–1814 (2007).

    Google Scholar 

  5. Danno, H. et al. Biochem. Biophys. Res. Commun. 391, 1222–1227 (2010).

    Google Scholar 

  6. Lee, M.W. et al. Cell Metab. 11, 331–339 (2010).

    Google Scholar 

  7. Merkel, M., Eckel, R.H. & Goldberg, I.J. J. Lipid Res. 43, 1997–2006 (2002).

    Google Scholar 

  8. Hegele, R.A. Nat. Rev. Genet. 10, 109–121 (2009).

    Google Scholar 

  9. Kliewer, S.A. & Mangelsdorf, D.J. Am. J. Clin. Nutr. 91, 254S–257S (2010).

    Google Scholar 

  10. Guillou, H., Zadravec, D., Martin, P.G. & Jacobsson, A. Prog. Lipid Res. 49, 186–199 (2010).

    Google Scholar 

  11. Gong, J., Sun, Z. & Li, P. Curr. Opin. Lipidol. 20, 121–126 (2009).

    Google Scholar 

  12. Yang, X. et al. Cell Metab. 11, 194–205 (2010).

    Google Scholar 

  13. Goldberg, I.J., Scheraldi, C.A., Yacoub, L.K., Saxena, U. & Bisgaier, C.L. J. Biol. Chem. 265, 4266–4272 (1990).

    Google Scholar 

  14. Jong, M.C., Hofker, M.H. & Havekes, L.M. Arterioscler. Thromb. Vasc. Biol. 19, 472–484 (1999).

    Google Scholar 

  15. Bodmer, W. & Bonilla, C. Nat. Genet. 40, 695–701 (2008).

    Google Scholar 

  16. Johansen, C.T., Kathiresan, S. & Hegele, R.A. J. Lipid Res. 52, 189–206 (2011).

    Google Scholar 

  17. Johansen, C.T. et al. Nat. Genet. 42, 684–687 (2010).

    Google Scholar 

  18. 1000 Genomes Project Consortium. Nature 467, 1061–1073 (2010).

  19. Horton, J.D., Goldstein, J.L. & Brown, M.S. J. Clin. Invest. 109, 1125–1131 (2002).

    Google Scholar 

  20. Duval, C., Muller, M. & Kersten, S. Biochim. Biophys. Acta 1771, 961–971 (2007).

    Google Scholar 

Download references

Acknowledgements

We thank B. Zhai and S. Gygi for mass spectrometry analysis, K. Sigrist for assistance with the development of transgenic mice, R. Hassell for assistance with genomic DNA sequencing, B. Monia (Isis Innovation) for Apoc3-specific antibody and D. Cohen for invaluable suggestions and comments on the manuscript. The research was supported by the Harvard University Accelerator Fund (L.H.G.), a Howard Hughes Medical Institute (HHMI) fellowship (P.G.), the Harvard Digestive Disease Center, US National Institutes of Health grant P30 DK34845 (A.-H.L.), US National Institutes of Health grant DK082448 (L.H.G.) and grants from the American Heart Association (A.-H.L. and J.H.L.), Canadian Institutes for Health Research and Genome Canada through the Ontario Genomics Institute.

Author information

Authors and Affiliations

Authors

Contributions

A.-H.L. designed the experiments. J.H.L. performed in vivo experiments in Creb3l3−/− mice and mutational analysis of CREB-H protein. A.-H.L. and P.G. generated and characterized CREB-H(N)-transgenic mice. J.D.B. performed post-heparin LPL assays. J.W. and C.T.J. performed sequencing experiments. S.A.D. provided Creb3l3−/− mice. A.-H.L., L.H.G., R.A.H. and J.P. analyzed the data. A.-H.L., L.H.G. and R.A.H. wrote the manuscript.

Corresponding authors

Correspondence to Laurie H Glimcher or Ann-Hwee Lee.

Ethics declarations

Competing interests

L.H.G. holds equity in and is on the corporate board of directors of Bristol-Myers Squibb.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5, Supplementary Tables 1 and 2 and Supplementary Methods (PDF 1842 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J., Giannikopoulos, P., Duncan, S. et al. The transcription factor cyclic AMP–responsive element–binding protein H regulates triglyceride metabolism. Nat Med 17, 812–815 (2011). https://doi.org/10.1038/nm.2347

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2347

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing