Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ablation of Fmrp in adult neural stem cells disrupts hippocampus-dependent learning

Abstract

Deficiency in fragile X mental retardation protein (FMRP) results in fragile X syndrome (FXS), an inherited form of intellectual disability. Despite extensive research, it is unclear how FMRP deficiency contributes to the cognitive deficits in FXS. Fmrp-null mice show reduced adult hippocampal neurogenesis. As Fmrp is also enriched in mature neurons, we investigated the function of Fmrp expression in neural stem and progenitor cells (aNSCs) and its role in adult neurogenesis. Here we show that ablation of Fmrp in aNSCs by inducible gene recombination leads to reduced hippocampal neurogenesis in vitro and in vivo, as well as markedly impairing hippocampus-dependent learning in mice. Conversely, restoration of Fmrp expression specifically in aNSCs rescues these learning deficits in Fmrp-deficient mice. These data suggest that defective adult neurogenesis may contribute to the learning impairment seen in FXS, and these learning deficits can be rectified by delayed restoration of Fmrp specifically in aNSCs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fmrp deletion in Nestin-expressing cells resulted in fewer YFP+ cells in the dentate gyrus.
Figure 2: Selective deletion of Fmrp in nestin-expressing cells alters cell proliferation and fate specification of aNSCs.
Figure 3: Selective deletion of Fmrp in primary aNSCs isolated from adult dentate gyrus results in altered proliferation and differentiation of aNSCs and reduced neurite extension of aNSC-differentiated neurons.
Figure 4: Deletion of Fmrp from Nestin-positive aNSCs results in deficits in hippocampus-dependent learning.
Figure 5: Restoration of Fmrp in primary aNSCs rescues proliferation and differentiation deficits of Fmrp-deficient aNSCs and neurite extension deficits of aNSC-differentiated neurons.
Figure 6: Restoration of Fmrp in Nestin-expressing aNSCs and their progeny rescues hippocampus-dependent learning deficits in Fmrp-deficient mice.

Similar content being viewed by others

References

  1. Deng, W., Aimone, J.B. & Gage, F.H. New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat. Rev. Neurosci. 11, 339–350 (2010).

    Article  CAS  Google Scholar 

  2. Kempermann, G., Krebs, J. & Fabel, K. The contribution of failing adult hippocampal neurogenesis to psychiatric disorders. Curr. Opin. Psychiatry 21, 290–295 (2008).

    Article  Google Scholar 

  3. Clelland, C.D. et al. A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science 325, 210–213 (2009).

    Article  CAS  Google Scholar 

  4. Deng, W., Saxe, M.D., Gallina, I.S. & Gage, F.H. Adult–born hippocampal dentate granule cells undergoing maturation modulate learning and memory in the brain. J. Neurosci. 29, 13532–13542 (2009).

    Article  CAS  Google Scholar 

  5. Dupret, D. et al. Spatial relational memory requires hippocampal adult neurogenesis. PLoS One 3, e1959 (2008).

    Article  Google Scholar 

  6. Farioli–Vecchioli, S. et al. The timing of differentiation of adult hippocampal neurons is crucial for spatial memory. PLoS Biol. 6, e246 (2008).

    Article  Google Scholar 

  7. Imayoshi, I. et al. Roles of continuous neurogenesis in the structural and functional integrity of the adult forebrain. Nat. Neurosci. 11, 1153–1161 (2008).

    Article  CAS  Google Scholar 

  8. Saxe, M.D. et al. Ablation of hippocampal neurogenesis impairs contextual fear conditioning and synaptic plasticity in the dentate gyrus. Proc. Natl. Acad. Sci. USA 103, 17501–17506 (2006).

    Article  CAS  Google Scholar 

  9. Creer, D.J., Romberg, C., Saksida, L.M., van Praag, H. & Bussey, T.J. Running enhances spatial pattern separation in mice. Proc. Natl. Acad. Sci. USA 107, 2367–2372 (2010).

    Article  CAS  Google Scholar 

  10. Kitamura, T. et al. Adult neurogenesis modulates the hippocampus-dependent period of associative fear memory. Cell 139, 814–827 (2009).

    Article  CAS  Google Scholar 

  11. Penagarikano, O., Mulle, J.G. & Warren, S.T. The pathophysiology of fragile X syndrome. Annu. Rev. Genomics Hum. Genet. 8, 109–129 (2007).

    Article  CAS  Google Scholar 

  12. Lightbody, A.A. & Reiss, A.L. Gene, brain, and behavior relationships in fragile X syndrome: evidence from neuroimaging studies. Dev. Disabil. Res. Rev. 15, 343–352 (2009).

    Article  Google Scholar 

  13. Mineur, Y.S., Huynh, L.X. & Crusio, W.E. Social behavior deficits in the Fmr1 mutant mouse. Behav. Brain Res. 168, 172–175 (2006).

    Article  CAS  Google Scholar 

  14. Dobkin, C. et al. Fmr1 knockout mouse has a distinctive strain-specific learning impairment. Neuroscience 100, 423–429 (2000).

    Article  CAS  Google Scholar 

  15. D'Hooge, R. et al. Mildly impaired water maze performance in male Fmr1 knockout mice. Neuroscience 76, 367–376 (1997).

    Article  CAS  Google Scholar 

  16. Brennan, F.X., Albeck, D.S. & Paylor, R. Fmr1 knockout mice are impaired in a leverpress escape/avoidance task. Genes Brain Behav. 5, 467–471 (2006).

    Article  CAS  Google Scholar 

  17. Hayashi, M.L. et al. Inhibition of p21-activated kinase rescues symptoms of fragile X syndrome in mice. Proc. Natl. Acad. Sci. USA 104, 11489–11494 (2007).

    Article  CAS  Google Scholar 

  18. Zhao, M.G. et al. Deficits in trace fear memory and long-term potentiation in a mouse model for fragile X syndrome. J. Neurosci. 25, 7385–7392 (2005).

    Article  CAS  Google Scholar 

  19. Krueger, D.D. & Bear, M.F. Toward fulfilling the promise of molecular medicine in fragile X syndrome. Annu. Rev. Med. 62, 411–429 (2010).

    Article  Google Scholar 

  20. Mercaldo, V., Descalzi, G. & Zhuo, M. Fragile X mental retardation protein in learning-related synaptic plasticity. Mol. Cells 28, 501–507 (2009).

    Article  CAS  Google Scholar 

  21. Bassell, G.J. & Warren, S.T. Fragile X syndrome: loss of local mRNA regulation alters synaptic development and function. Neuron 60, 201–214 (2008).

    Article  CAS  Google Scholar 

  22. Luo, Y. et al. Fragile X mental retardation protein regulates proliferation and differentiation of adult neural stem/progenitor cells. PLoS Genet. 6, e1000898 (2010).

    Article  Google Scholar 

  23. Mientjes, E.J. et al. The generation of a conditional Fmr1 knock out mouse model to study Fmrp function in vivo. Neurobiol. Dis. 21, 549–555 (2006).

    Article  CAS  Google Scholar 

  24. Lagace, D.C. et al. Dynamic contribution of nestin-expressing stem cells to adult neurogenesis. J. Neurosci. 27, 12623–12629 (2007).

    Article  CAS  Google Scholar 

  25. Ables, J.L. et al. Notch1 is required for maintenance of the reservoir of adult hippocampal stem cells. J. Neurosci. 30, 10484–10492 (2010).

    Article  CAS  Google Scholar 

  26. Raponi, E. et al. S100B expression defines a state in which GFAP-expressing cells lose their neural stem cell potential and acquire a more mature developmental stage. Glia 55, 165–177 (2007).

    Article  Google Scholar 

  27. Jin, P. & Warren, S.T. New insights into fragile X syndrome: from molecules to neurobehaviors. Trends Biochem. Sci. 28, 152–158 (2003).

    Article  CAS  Google Scholar 

  28. Shors, T.J., Townsend, D.A., Zhao, M., Kozorovitskiy, Y. & Gould, E. Neurogenesis may relate to some but not all types of hippocampal-dependent learning. Hippocampus 12, 578–584 (2002).

    Article  Google Scholar 

  29. Peier, A.M. et al. (Over)correction of FMR1 deficiency with YAC transgenics: behavioral and physical features. Hum. Mol. Genet. 9, 1145–1159 (2000).

    Article  CAS  Google Scholar 

  30. Eadie, B.D. et al. Fmr1 knockout mice show reduced anxiety and alterations in neurogenesis that are specific to the ventral dentate gyrus. Neurobiol. Dis. 36, 361–373 (2009).

    Article  CAS  Google Scholar 

  31. Spencer, C.M. et al. Exaggerated behavioral phenotypes in Fmr1/Fxr2 double knockout mice reveal a functional genetic interaction between Fragile X–related proteins. Hum. Mol. Genet. 15, 1984–1994 (2006).

    Article  CAS  Google Scholar 

  32. Van Dam, D. et al. Spatial learning, contextual fear conditioning and conditioned emotional response in Fmr1 knockout mice. Behav. Brain Res. 117, 127–136 (2000).

    Article  CAS  Google Scholar 

  33. Misane, I. et al. Time-dependent involvement of the dorsal hippocampus in trace fear conditioning in mice. Hippocampus 15, 418–426 (2005).

    Article  CAS  Google Scholar 

  34. Moore, M.D. et al. Trace and contextual fear conditioning is enhanced in mice lacking the α4 subunit of the GABAA receptor. Neurobiol. Learn. Mem. 93, 383–387 (2010).

    Article  CAS  Google Scholar 

  35. Quinn, J.J., Oommen, S.S., Morrison, G.E. & Fanselow, M.S. Post-training excitotoxic lesions of the dorsal hippocampus attenuate forward trace, backward trace and delay fear conditioning in a temporally specific manner. Hippocampus 12, 495–504 (2002).

    Article  Google Scholar 

  36. Gilbert, P.E., Kesner, R.P. & Lee, I. Dissociating hippocampal subregions: double dissociation between dentate gyrus and CA1. Hippocampus 11, 626–636 (2001).

    Article  CAS  Google Scholar 

  37. Aimone, J.B., Deng, W. & Gage, F.H. Adult neurogenesis: integrating theories and separating functions. Trends Cogn. Sci. 14, 325–337 (2010).

    Article  Google Scholar 

  38. Aimone, J.B., Wiles, J. & Gage, F.H. Potential role for adult neurogenesis in the encoding of time in new memories. Nat. Neurosci. 9, 723–727 (2006).

    Article  CAS  Google Scholar 

  39. Feng, R. et al. Deficient neurogenesis in forebrain-specific presenilin-1 knockout mice is associated with reduced clearance of hippocampal memory traces. Neuron 32, 911–926 (2001).

    Article  CAS  Google Scholar 

  40. Stone, S.S. et al. Functional convergence of developmentally and adult-generated granule cells in dentate gyrus circuits supporting hippocampus-dependent memory. Hippocampus published online, doi:10.1002/hipo.20845 (7 September 2010).

  41. Toni, N. et al. Neurons born in the adult dentate gyrus form functional synapses with target cells. Nat. Neurosci. 11, 901–907 (2008).

    Article  CAS  Google Scholar 

  42. Ge, S., Yang, C.H., Hsu, K.S., Ming, G.L. & Song, H. A critical period for enhanced synaptic plasticity in newly generated neurons of the adult brain. Neuron 54, 559–566 (2007).

    Article  CAS  Google Scholar 

  43. Schmidt-Hieber, C., Jonas, P. & Bischofberger, J. Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature 429, 184–187 (2004).

    Article  CAS  Google Scholar 

  44. Bhattacharyya, A. et al. Normal neurogenesis but abnormal gene expression in human fragile X cortical progenitor cells. Stem Cells Dev. 17, 107–117 (2008).

    Article  CAS  Google Scholar 

  45. Castrén, M. et al. Altered differentiation of neural stem cells in fragile X syndrome. Proc. Natl. Acad. Sci. USA 102, 17834–17839 (2005).

    Article  Google Scholar 

  46. Cunningham, C.L. et al. Premutation CGG-repeat expansion of the Fmr1 gene impairs mouse neocortical development. Hum. Mol. Genet. 20, 64–79 (2010).

    Article  Google Scholar 

  47. Pepper, A.S., Beerman, R.W., Bhogal, B. & Jongens, T.A. Argonaute2 suppresses Drosophila fragile X expression preventing neurogenesis and oogenesis defects. PLoS One 4, e7618 (2009).

    Article  Google Scholar 

  48. Soriano, P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat. Genet. 21, 70–71 (1999).

    Article  CAS  Google Scholar 

  49. Smrt, R.D. et al. Mecp2 deficiency leads to delayed maturation and altered gene expression in hippocampal neurons. Neurobiol. Dis. 27, 77–89 (2007).

    Article  CAS  Google Scholar 

  50. Smrt, R.D. et al. MicroRNA miR-137 regulates neuronal maturation by targeting ubiquitin ligase mind bomb-1. Stem Cells 28, 1060–1070 (2010).

    Article  CAS  Google Scholar 

  51. Babu, H., Cheung, G., Kettenmann, H., Palmer, T.D. & Kempermann, G. Enriched monolayer precursor cell cultures from micro-dissected adult mouse dentate gyrus yield functional granule cell-like neurons. PLoS ONE 2, e388 (2007).

    Article  Google Scholar 

  52. Barkho, B.Z. et al. Endogenous matrix metalloproteinase (MMP)-3 and MMP-9 promote the differentiation and migration of adult neural progenitor cells in response to chemokines. Stem Cells 26, 3139–3149 (2008).

    Article  CAS  Google Scholar 

  53. Liu, C. et al. Epigenetic regulation of miR-184 by MBD1 governs neural stem cell proliferation and differentiation. Cell Stem Cell 6, 433–444 (2010).

    Article  CAS  Google Scholar 

  54. Kaspar, B.K. et al. Adeno-associated virus effectively mediates conditional gene modification in the brain. Proc. Natl. Acad. Sci. USA 99, 2320–2325 (2002).

    Article  CAS  Google Scholar 

  55. Paz, R., Barsness, B., Martenson, T., Tanner, D. & Allan, A.M. Behavioral teratogenicity induced by nonforced maternal nicotine consumption. Neuropsychopharmacology 32, 693–699 (2007).

    Article  CAS  Google Scholar 

  56. Martinez-Finley, E.J., Ali, A.M. & Allan, A.M. Learning deficits in C57BL/6J mice following perinatal arsenic exposure: consequence of lower corticosterone receptor levels? Pharmacol. Biochem. Behav. 94, 271–277 (2009).

    Article  CAS  Google Scholar 

  57. Harrell, A.V. & Allan, A.M. Improvements in hippocampal-dependent learning and decremental attention in 5-HT(3) receptor overexpressing mice. Learn. Mem. 10, 410–419 (2003).

    Article  Google Scholar 

  58. Allan, A.M. et al. The loss of methyl-CpG binding protein 1 leads to autism-like behavioral deficits. Hum. Mol. Genet. 17, 2047–2057 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C.T. Strauss for editing the manuscript; H. van Praag, D. Schaffer and T. Xie for critical reading of the manuscript; members of the Zhao lab for discussions; S.J. von Hoyningen-Huene for technical assistance; D.C. Lagace and R.D. Smrt for technical help; and H. van Praag (US National Institutes of Health (NIH)/National Institute of Aging) and F. Gage (Salk Institute) for the Cre-GFP construct. This work was supported by grants from the NIH to X.Z. (MH080434 and MH078972) and D.L.N. (HD38038 and HD024064). E.G.S. is supported by an NIH National Institute of Mental Health Career Opportunity for Research training grant (MH19101). Images in this paper were generated in the University of New Mexico Cancer Center Fluorescence Microscopy Shared Resource, funded as detailed here: http://hsc.unm.edu/crtc/microscopy/acknowledgement.shtml/.

Author information

Authors and Affiliations

Authors

Contributions

W.G. and X.Z. planned the experiments, analyzed data and wrote the manuscript. A.M.A. developed, carried out and analyzed data for behavioral analyses. W.G., L.Z., E.B.J., E.G.S., A.C.M., S.L.G. and A.M.A. carried out all the experiments. P.J. helped with mouse line acquisition and concept development. R.Z., B.A.O. and D.L.N. made Fmr1-cON mice. A.J.E. provided the Nes-CreERT2 and ROSA26-YFP mouse lines and guided histological analysis.

Corresponding author

Correspondence to Xinyu Zhao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Methods (PDF 1372 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, W., Allan, A., Zong, R. et al. Ablation of Fmrp in adult neural stem cells disrupts hippocampus-dependent learning. Nat Med 17, 559–565 (2011). https://doi.org/10.1038/nm.2336

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2336

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing