Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cancer epigenetics reaches mainstream oncology

Abstract

Epigenetics is one of the most promising and expanding fields in the current biomedical research landscape. Since the inception of epigenetics in the 1940s, the discoveries regarding its implications in normal and disease biology have not stopped, compiling a vast amount of knowledge in the past decade. The field has moved from just one recognized marker, DNA methylation, to a variety of others, including a wide spectrum of histone modifications. From the methodological standpoint, the successful initial single gene candidate approaches have been complemented by the current comprehensive epigenomic approaches that allow the interrogation of genomes to search for translational applications in an unbiased manner. Most important, the discovery of mutations in the epigenetic machinery and the approval of the first epigenetic drugs for the treatment of subtypes of leukemias and lymphomas has been an eye-opener for many biomedical scientists and clinicians. Herein, we will summarize the progress in the field of cancer epigenetics research that has reached mainstream oncology in the development of new biomarkers of the disease and new pharmacological strategies.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: DNA methylation patterns in normal and cancer cells.
Figure 2: Histone modification patterns in normal and cancer cells.
Figure 3: Selection of epigenetic genes disrupted in human tumors.
Figure 4: Epigenetic biomarkers in oncology.
Figure 5: Epigenetic drugs for cancer therapy.

References

  1. Waddington, C.H. The epigenotype. Endeavour 1, 18–20 (1942).

    Google Scholar 

  2. Berger, S.L., Kouzarides, T., Shiekhattar, R. & Shilatifard, A. An operational definition of epigenetics. Genes Dev. 23, 781–783 (2009).

    Google Scholar 

  3. Esteller, M. Epigenetics in cancer. N. Engl. J. Med. 358, 1148–1159 (2008).

    Google Scholar 

  4. Jones, P.A. & Baylin, S.B. The epigenomics of cancer. Cell 128, 683–692 (2007).

    Google Scholar 

  5. Bird, A. DNA methylation patterns and epigenetic memory. Genes Dev. 16, 6–21 (2002).

    Google Scholar 

  6. Wang, Y. & Leung, F.C. An evaluation of new criteria for CpG islands in the human genome as gene markers. Bioinformatics 20, 1170–1177 (2004).

    Google Scholar 

  7. Suzuki, M.M. & Bird, A. DNA methylation landscapes: provocative insights from epigenomics. Nat. Rev. Genet. 9, 465–476 (2008).

    Google Scholar 

  8. Futscher, B.W. et al. Role for DNA methylation in the control of cell type specific maspin expression. Nat. Genet. 31, 175–179 (2002).

    Google Scholar 

  9. Hattori, N. et al. Epigenetic control of mouse Oct-4 gene expression in embryonic stem cells and trophoblast stem cells. J. Biol. Chem. 279, 17063–17069 (2004).

    Google Scholar 

  10. Doi, A. et al. Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat. Genet. 41, 1350–1353 (2009).

    Google Scholar 

  11. Meissner, A. et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454, 766–770 (2008).

    Google Scholar 

  12. Lister, R. et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462, 315–322 (2009).

    Google Scholar 

  13. Tahiliani, M. et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324, 930–935 (2009).

    Google Scholar 

  14. Ito, S. et al. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466, 1129–1133 (2010).

    Google Scholar 

  15. Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007).

    Google Scholar 

  16. Allis, C.D. et al. New nomenclature for chromatin-modifying enzymes. Cell 131, 633–636 (2007).

    Google Scholar 

  17. Li, B., Carey, M. & Workman, J.L. The role of chromatin during transcription. Cell 128, 707–719 (2007).

    Google Scholar 

  18. Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837 (2007).

    Google Scholar 

  19. Rosenfeld, J.A. et al. Determination of enriched histone modifications in non-genic portions of the human genome. BMC Genomics 10, 143 (2009).

    Google Scholar 

  20. Mikkelsen, T.S. et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553–560 (2007).

    Google Scholar 

  21. Esteller, M. Cancer epigenomics: DNA methylomes and histone-modification maps. Nat. Rev. Genet. 8, 286–298 (2007).

    Google Scholar 

  22. Feinberg, A.P. Cancer epigenetics is no Mickey Mouse. Cancer Cell 8, 267–268 (2005).

    Google Scholar 

  23. Jones, P.A. & Laird, P.W. Cancer epigenetics comes of age. Nat. Genet. 21, 163–167 (1999).

    Google Scholar 

  24. Irizarry, R.A. et al. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat. Genet. 41, 178–186 (2009).

    Google Scholar 

  25. Eden, A., Gaudet, F., Waghmare, A. & Jaenisch, R. Chromosomal instability and tumors promoted by DNA hypomethylation. Science 300, 455 (2003).

    Google Scholar 

  26. Howard, G., Eiges, R., Gaudet, F., Jaenisch, R. & Eden, A. Activation and transposition of endogenous retroviral elements in hypomethylation induced tumors in mice. Oncogene 27, 404–408 (2008).

    Google Scholar 

  27. Rodriguez, J. et al. Chromosomal instability correlates with genome-wide DNA demethylation in human primary colorectal cancers. Cancer Res. 66, 8462–9468 (2006).

    Google Scholar 

  28. Ogawa, O. et al. Relaxation of insulin-like growth factor II gene imprinting implicated in Wilms' tumour. Nature 362, 749–751 (1993).

    Google Scholar 

  29. Watt, P.M., Kumar, R. & Kees, U.R. Promoter demethylation accompanies reactivation of the HOX11 proto-oncogene in leukemia. Genes Chromosom. Cancer 29, 371–377 (2000).

    Google Scholar 

  30. Wilson, A.S., Power, B.E. & Molloy, P.L. DNA hypomethylation and human diseases. Biochim. Biophys. Acta 1775, 138–162 (2007).

    Google Scholar 

  31. Saito, Y. et al. Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 9, 435–443 (2006).

    Google Scholar 

  32. Huang, Y.W. et al. Epigenetic repression of microRNA-129–2 leads to overexpression of SOX4 oncogene in endometrial cancer. Cancer Res. 69, 9038–9046 (2009).

    Google Scholar 

  33. Lujambio, A. et al. Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res. 67, 1424–1429 (2007).

    Google Scholar 

  34. Toyota, M. et al. Epigenetic silencing of microRNA-34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer. Cancer Res. 68, 4123–4132 (2008).

    Google Scholar 

  35. Ley, T.J. et al. DNMT3A Mutations in acute myeloid leukemia. N. Engl. J. Med. 363, 2424–2333 (2010).

    Google Scholar 

  36. Burmeister, T. et al. The MLL recombinome of adult CD10-negative B-cell precursor acute lymphoblastic leukemia: results from the GMALL study group. Blood 113, 4011–4015 (2009).

    Google Scholar 

  37. Meyer, C. et al. New insights to the MLL recombinome of acute leukemias. Leukemia 23, 1490–1499 (2009).

    Google Scholar 

  38. Delhommeau, F. et al. Mutation in TET2 in myeloid cancers. N. Engl. J. Med. 360, 2289–2301 (2009).

    Google Scholar 

  39. Ko, M. et al. Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature 468, 839–843 (2010).

    Google Scholar 

  40. Fraga, M.F. et al. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4is a common hallmark of human cancer. Nat. Genet. 37, 391–400 (2005).

    Google Scholar 

  41. Seligson, D.B. et al. Global histone modification patterns predict risk of prostate cancer recurrence. Nature 435, 1262–1266 (2005).

    Google Scholar 

  42. Chan, E.M. et al. MOZ and MOZ-CBP cooperate with NF-κB to activate transcription from NF-κB–dependent promoters. Exp. Hematol. 35, 1782–1792 (2007).

    Google Scholar 

  43. Yang, X.J. The diverse superfamily of lysine acetyltransferases and their roles in leukemia and other diseases. Nucleic Acids Res. 32, 959–976 (2004).

    Google Scholar 

  44. Ferrari, R. et al. Epigenetic reprogramming by adenovirus e1a. Science 321, 1086–1088 (2008).

    Google Scholar 

  45. Rasti, M., Grand, R.J., Mymryk, J.S., Gallimore, P.H. & Turnell, A.S. Recruitment of CBP/p300, TATA-binding protein and S8 to distinct regions at the N terminus of adenovirus E1A. J. Virol. 79, 5594–5605 (2005).

    Google Scholar 

  46. Gayther, S.A. et al. Mutations truncating the EP300 acetylase in human cancers. Nat. Genet. 24, 300–303 (2000).

    Google Scholar 

  47. Gorrini, C. et al. Tip60 is a haplo-insufficient tumour suppressor required for an oncogene-induced DNA damage response. Nature 448, 1063–1067 (2007).

    Google Scholar 

  48. Bolden, J.E., Peart, M.J. & Johnstone, R.W. Anticancer activities of histone deacetylase inhibitors. Nat. Rev. Drug Discov. 5, 769–784 (2006).

    Google Scholar 

  49. Ropero, S. et al. A truncating mutation of HDAC2 in human cancers confers resistance to histone deacetylase inhibition. Nat. Genet. 38, 566–569 (2006).

    Google Scholar 

  50. Saunders, L.R. & Verdin, E. Sirtuins: critical regulators at the crossroads between cancer and aging. Oncogene 26, 5489–5504 (2007).

    Google Scholar 

  51. Pruitt, K. et al. Inhibition of SIRT1 reactivates silenced cancer genes without loss of promoter DNA hypermethylation. PLoS Genet. 2, e40 (2006).

    Google Scholar 

  52. Krivtsov, A.V. & Armstrong, S.A. MLL translocations, histone modifications and leukaemia stem-cell development. Nat. Rev. Cancer 7, 823–833 (2007).

    Google Scholar 

  53. Chi, P., Allis, C.D. & Wang, G.G. Covalent histone modifications—miswritten, misinterpreted and mis-erased in human cancers. Nat. Rev. Cancer 10, 457–469 (2010).

    Google Scholar 

  54. Hamamoto, R. et al. SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. Nat. Cell Biol. 6, 731–740 (2004).

    Google Scholar 

  55. Bracken, A.P. & Helin, K. Polycomb group proteins: navigators of lineage pathways led astray in cancer. Nat. Rev. Cancer 9, 773–784 (2009).

    Google Scholar 

  56. Lu, C. et al. Regulation of tumor angiogenesis by EZH2. Cancer Cell 18, 185–197 (2010).

    Google Scholar 

  57. Morin, R.D. et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat. Genet. 42, 181–185 (2010).

    Google Scholar 

  58. Berdasco, M. et al. Epigenetic inactivation of the Sotos overgrowth syndrome gene histone methyltransferase NSD1 in human neuroblastoma and glioma. Proc. Natl. Acad. Sci. USA 106, 21830–21835 (2009).

    Google Scholar 

  59. Wang, G.G., Cai, L., Pasillas, M.P. & Kamps, M.P. NUP98–NSD1 links H3K36 methylation to Hox-A gene activation and leukaemogenesis. Nat. Cell Biol. 9, 804–812 (2007).

    Google Scholar 

  60. Herman, J.G. & Baylin, S.B. Gene silencing in cancer in association with promoter hypermethylation. N. Engl. J. Med. 349, 2042–2054 (2003).

    Google Scholar 

  61. Costello, J.F. et al. Aberrant CpG-island methylation has non-random and tumour-type–specific patterns. Nat. Genet. 24, 132–138 (2000).

    Google Scholar 

  62. Esteller, M., Corn, P.G., Baylin, S.B. & Herman, J.G. A gene hypermethylation profile of human cancer. Cancer Res. 61, 3225–3229 (2001).

    Google Scholar 

  63. Laird, P.W. The power and the promise of DNA methylation markers. Nat. Rev. Cancer 3, 253–266 (2003).

    Google Scholar 

  64. Shivapurkar, N. & Gazdar, A.F. DNA methylation based biomarkers in non-invasive cancer screening. Curr. Mol. Med. 10, 123–132 (2010).

    Google Scholar 

  65. Esteller, M. et al. Detection of aberrant promoter hypermethylation of tumor suppressor genes in serum DNA from non-small cell lung cancer patients. Cancer Res. 59, 67–70 (1999).

    Google Scholar 

  66. Chen, W.D. et al. Detection in fecal DNA of colon cancer-specific methylation of the nonexpressed vimentin gene. J. Natl. Cancer Inst. 97, 1124–1132 (2005).

    Google Scholar 

  67. Hoque, M.O. et al. Quantitation of promoter methylation of multiple genes in urine DNA and bladder cancer detection. J. Natl. Cancer Inst. 98, 996–1004 (2006).

    Google Scholar 

  68. Belinsky, S.A. et al. Promoter hypermethylation of multiple genes in sputum precedes lung cancer incidence in a high-risk cohort. Cancer Res. 66, 3338–3344 (2006).

    Google Scholar 

  69. Bailey, V.J. et al. MS-qFRET: a quantum dot-based method for analysis of DNA methylation. Genome Res. 19, 1455–1461 (2009).

    Google Scholar 

  70. Li, M. et al. Sensitive digital quantification of DNA methylation in clinical samples. Nat. Biotechnol. 27, 858–863 (2009).

    Google Scholar 

  71. Belinsky, S.A. Gene-promoter hypermethylation as a biomarker in lung cancer. Nat. Rev. Cancer 4, 707–717 (2004).

    Google Scholar 

  72. Lee, W.H. et al. Cytidine methylation of regulatory sequences near the pi-class glutathione S-transferase gene accompanies human prostatic carcinogenesis. Proc. Natl. Acad. Sci. USA 91, 11733–11737 (1994).

    Google Scholar 

  73. Esteller, M. et al. Inactivation of glutathione S-transferase P1 gene by promoter hypermethylation in human neoplasia. Cancer Res. 58, 4515–4518 (1998).

    Google Scholar 

  74. Brooks, J.D. et al. CG island methylation changes near the GSTP1 gene in prostatic intraepithelial neoplasia. Cancer Epidemiol. Biomarkers Prev. 7, 531–536 (1998).

    Google Scholar 

  75. Jerónimo, C. et al. Quantitation of GSTP1 methylation in non-neoplastic prostatic tissue and organ-confined prostate adenocarcinoma. J. Natl. Cancer Inst. 93, 1747–1752 (2001).

    Google Scholar 

  76. Cairns, P. et al. Molecular detection of prostate cancer in urine by GSTP1 hypermethylation. Clin. Cancer Res. 7, 2727–2730 (2001).

    Google Scholar 

  77. Hoque, M.O. et al. Quantitative methylation-specific polymerase chain reaction gene patterns in urine sediment distinguish prostate cancer patients from control subjects. J. Clin. Oncol. 23, 6569–6575 (2005).

    Google Scholar 

  78. Bastian, P.J. et al. CpG island hypermethylation profile in the serum of men with clinically localized and hormone refractory metastatic prostate cancer. J Urol 179, 529–534 (2008).

    Google Scholar 

  79. Richiardi, L. et al. Promoter methylation in APC, RUNX3 and GSTP1 and mortality in prostate cancer patients. J. Clin. Oncol. 27, 3161–3168 (2009).

    Google Scholar 

  80. Weigelt, B., Baehner, F.L. & Reis-Filho, J.S. The contribution of gene expression profiling to breast cancer classification, prognostication and prediction: a retrospective of the last decade. J. Pathol. 220, 263–280 (2010).

    Google Scholar 

  81. Hernandez-Vargas, H. et al. Hepatocellular carcinoma displays distinct DNA methylation signatures with potential as clinical predictors. PLoS ONE 5, e9749 (2010).

    Google Scholar 

  82. Noushmehr, H. et al. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 17, 510–522 (2010).

    Google Scholar 

  83. Brock, M.V. et al. DNA methylation markers and early recurrence in stage I lung cancer. N. Engl. J. Med. 358, 1118–1128 (2008).

    Google Scholar 

  84. Lujambio, A. et al. A microRNA DNA methylation signature for human cancer metastasis. Proc. Natl. Acad. Sci. USA 105, 13556–13561 (2008).

    Google Scholar 

  85. Fernandez, A.F. et al. The dynamic DNA methylomes of double-stranded DNA viruses associated with human cancer. Genome Res. 19, 438–451 (2009).

    Google Scholar 

  86. Esteller, M. et al. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N. Engl. J. Med. 343, 1350–1354 (2000).

    Google Scholar 

  87. Hegi, M.E. et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N. Engl. J. Med. 352, 997–1003 (2005).

    Google Scholar 

  88. Paz, M.F. et al. CpG island hypermethylation of the DNA repair enzyme methyltransferase predicts response to temozolomide in primary gliomas. Clin. Cancer Res. 10, 4933–4938 (2004).

    Google Scholar 

  89. Esteller, M., Hamilton, S.R., Burger, P.C., Baylin, S.B. & Herman, J.G. Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is a common event in primary human neoplasia. Cancer Res. 59, 793–797 (1999).

    Google Scholar 

  90. Weller, M. et al. MGMT promoter methylation in malignant gliomas: ready for personalized medicine? Nat. Rev. Neurol. 6, 39–51 (2010).

    Google Scholar 

  91. Martinez, R. et al. Frequent hypermethylation of the DNA repair gene MGMT in long-term survivors of glioblastoma multiforme. J. Neurooncol. 83, 91–93 (2007).

    Google Scholar 

  92. Stupp, R. et al. Phase I/IIa study of cilengitide and temozolomide with concomitant radiotherapy followed by cilengitide and temozolomide maintenance therapy in patients with newly diagnosed glioblastoma. J. Clin. Oncol. 28, 2712–2718 (2010).

    Google Scholar 

  93. Chakravarti, A. et al. Temozolomide-mediated radiation enhancement in glioblastoma: a report on underlying mechanisms. Clin. Cancer Res. 12, 4738–4746 (2006).

    Google Scholar 

  94. The Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061–1068 (2008).

  95. McCormack, A.I. et al. Low O6-methylguanine-DNA methyltransferase (MGMT) expression and response to temozolomide in aggressive pituitary tumours. Clin. Endocrinol. 71, 226–233 (2009).

    Google Scholar 

  96. Esteller, M. et al. Hypermethylation of the DNA repair gene O6-methylguanine DNA methyltransferase and survival of patients with diffuse large B-cell lymphoma. J. Natl. Cancer Inst. 94, 26–32 (2002).

    Google Scholar 

  97. Watson, A.J. et al. Tumor O6-methylguanine-DNA methyltransferase inactivation by oral lomeguatrib. Clin. Cancer Res. 16, 743–749 (2010).

    Google Scholar 

  98. Plumb, J.A., Strathdee, G., Sludden, J., Kaye, S.B. & Brown, R. Reversal of drug resistance in human tumor xenografts by 2′-deoxy-5-azacytidine-induced demethylation of the hMLH1 gene promoter. Cancer Res. 60, 6039–6044 (2000).

    Google Scholar 

  99. Agrelo, R. et al. Epigenetic inactivation of the premature aging Werner syndrome gene in human cancer. Proc. Natl. Acad. Sci. USA 103, 8822–8827 (2006).

    Google Scholar 

  100. Ibanez de Caceres, I. et al. IGFBP-3 hypermethylation-derived deficiency mediates cisplatin resistance in non-small-cell lung cancer. Oncogene 29, 1681–1690 (2010).

    Google Scholar 

  101. Veeck, J.R.S., Setien, F., Gonzalez-Suarez, E., Osorio, A., Benitez, J., Herman, J.G. & Esteller, M. BRCA1 CpG island hypermethylation predicts sensitivity to poly (adenosine diphosphate)-ribose polymerase inhibitors. J. Clin. Oncol. 28, e563–e564 (2010).

    Google Scholar 

  102. Koga, Y. et al. The significance of aberrant CHFR methylation for clinical response to microtubule inhibitors in gastric cancer. J. Gastroenterol. 41, 133–139 (2006).

    Google Scholar 

  103. Toyota, M. et al. Epigenetic inactivation of CHFR in human tumors. Proc. Natl. Acad. Sci. USA 100, 7818–7823 (2003).

    Google Scholar 

  104. Ferreri, A.J. et al. Aberrant methylation in the promoter region of the reduced folate carrier gene is a potential mechanism of resistance to methotrexate in primary central nervous system lymphomas. Br. J. Haematol. 126, 657–664 (2004).

    Google Scholar 

  105. Dejeux, E. et al. DNA methylation profiling in doxorubicin treated primary locally advanced breast tumours identifies novel genes associated with survival and treatment response. Mol. Cancer 9, 68 (2010).

    Google Scholar 

  106. Billam, M., Witt, A.E. & Davidson, N.E. The silent estrogen receptor: Can we make it speak? Cancer Biol. Ther. 8, 485–496 (2009).

    Google Scholar 

  107. Laird, P.W. Principles and challenges of genome-wide DNA methylation analysis. Nat. Rev. Genet. 11, 191–203 (2010).

    Google Scholar 

  108. Li, M. et al. Integrated analysis of DNA methylation and gene expression reveals specific signaling pathways associated with platinum resistance in ovarian cancer. BMC Med. Genomics 2, 34 (2009).

    Google Scholar 

  109. Balch, C. et al. Antimitogenic and chemosensitizing effects of the methylation inhibitor zebularine in ovarian cancer. Mol. Cancer Ther. 4, 1505–1514 (2005).

    Google Scholar 

  110. Byrd, J.C. et al. A phase 1 and pharmacodynamic study of depsipeptide (FK228) in chronic lymphocytic leukemia and acute myeloid leukemia. Blood 105, 959–967 (2005).

    Google Scholar 

  111. Garcia, J.S., Jain, N. & Godley, L.A. An update on the safety and efficacy of decitabine in the treatment of myelodysplastic syndromes. Onco. Targets Ther. 3, 1–13 (2010).

    Google Scholar 

  112. O'Connor, O.A. et al. Clinical experience with intravenous and oral formulations of the novel histone deacetylase inhibitor suberoylanilide hydroxamic acid in patients with advanced hematologic malignancies. J. Clin. Oncol. 24, 166–173 (2006).

    Google Scholar 

  113. Piekarz, R.L. et al. Phase II multi-institutional trial of the histone deacetylase inhibitor romidepsin as monotherapy for patients with cutaneous T-cell lymphoma. J. Clin. Oncol. 27, 5410–5417 (2009).

    Google Scholar 

  114. Beumer, J.H. et al. Concentrations of the DNA methyltransferase inhibitor 5-fluoro-2′-deoxycytidine (FdCyd) and its cytotoxic metabolites in plasma of patients treated with FdCyd and tetrahydrouridine (THU). Cancer Chemother. Pharmacol. 62, 363–368 (2008).

    Google Scholar 

  115. Flotho, C. et al. The DNA methyltransferase inhibitors azacitidine, decitabine and zebularine exert differential effects on cancer gene expression in acute myeloid leukemia cells. Leukemia 23, 1019–1028 (2009).

    Google Scholar 

  116. Fang, M.Z. et al. Tea polyphenol (-)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res. 63, 7563–7570 (2003).

    Google Scholar 

  117. Lee, B.H., Yegnasubramanian, S., Lin, X. & Nelson, W.G. Procainamide is a specific inhibitor of DNA methyltransferase 1. J. Biol. Chem. 280, 40749–40756 (2005).

    Google Scholar 

  118. Segura-Pacheco, B. et al. Reactivation of tumor suppressor genes by the cardiovascular drugs hydralazine and procainamide and their potential use in cancer therapy. Clin. Cancer Res. 9, 1596–1603 (2003).

    Google Scholar 

  119. Villar-Garea, A., Fraga, M.F., Espada, J. & Esteller, M. Procaine is a DNA-demethylating agent with growth-inhibitory effects in human cancer cells. Cancer Res. 63, 4984–4989 (2003).

    Google Scholar 

  120. Siedlecki, P. et al. Discovery of two novel, small-molecule inhibitors of DNA methylation. J. Med. Chem. 49, 678–683 (2006).

    Google Scholar 

  121. Keppler, B.R. & Archer, T.K. Chromatin-modifying enzymes as therapeutic targets–Part 1. Expert Opin. Ther. Targets 12, 1301–1312 (2008).

    Google Scholar 

  122. Joseph, J. et al. Expression profiling of sodium butyrate (NaB)-treated cells: identification of regulation of genes related to cytokine signaling and cancer metastasis by NaB. Oncogene 23, 6304–6315 (2004).

    Google Scholar 

  123. Nebbioso, A. et al. Tumor-selective action of HDAC inhibitors involves TRAIL induction in acute myeloid leukemia cells. Nat. Med. 11, 77–84 (2005).

    Google Scholar 

  124. Bedalov, A., Gatbonton, T., Irvine, W.P., Gottschling, D.E. & Simon, J.A. Identification of a small molecule inhibitor of Sir2p. Proc. Natl. Acad. Sci. USA 98, 15113–15118 (2001).

    Google Scholar 

  125. Bitterman, K.J., Anderson, R.M., Cohen, H.Y., Latorre-Esteves, M. & Sinclair, D.A. Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1. J. Biol. Chem. 277, 45099–45107 (2002).

    Google Scholar 

  126. Grozinger, C.M., Chao, E.D., Blackwell, H.E., Moazed, D. & Schreiber, S.L. Identification of a class of small molecule inhibitors of the sirtuin family of NAD-dependent deacetylases by phenotypic screening. J. Biol. Chem. 276, 38837–38843 (2001).

    Google Scholar 

  127. Ota, H. et al. Sirt1 inhibitor, Sirtinol, induces senescence-like growth arrest with attenuated Ras-MAPK signaling in human cancer cells. Oncogene 25, 176–185 (2006).

    Google Scholar 

  128. Kojima, K. et al. A role for SIRT1 in cell growth and chemoresistance in prostate cancer PC3 and DU145 cells. Biochem. Biophys. Res. Commun. 373, 423–428 (2008).

    Google Scholar 

  129. Heltweg, B. et al. Antitumor activity of a small-molecule inhibitor of human silent information regulator 2 enzymes. Cancer Res. 66, 4368–4377 (2006).

    Google Scholar 

  130. Lara, E. et al. Salermide, a sirtuin inhibitor with a strong cancer-specific proapoptotic effect. Oncogene 28, 781–791 (2009).

    Google Scholar 

  131. Lain, S. et al. Discovery, in vivo activity and mechanism of action of a small-molecule p53 activator. Cancer Cell 13, 454–463 (2008).

    Google Scholar 

  132. Balasubramanyam, K. et al. Curcumin, a novel p300/CREB-binding protein–specific inhibitor of acetyltransferase, represses the acetylation of histone/nonhistone proteins and histone acetyltransferase–dependent chromatin transcription. J. Biol. Chem. 279, 51163–51171 (2004).

    Google Scholar 

  133. Mukhopadhyay, A. et al. Curcumin-induced suppression of cell proliferation correlates with down-regulation of cyclin D1 expression and CDK4-mediated retinoblastoma protein phosphorylation. Oncogene 21, 8852–8861 (2002).

    Google Scholar 

  134. Shishodia, S., Amin, H.M., Lai, R. & Aggarwal, B.B. Curcumin (diferuloylmethane) inhibits constitutive NF-κB activation, induces G1/S arrest, suppresses proliferation and induces apoptosis in mantle cell lymphoma. Biochem. Pharmacol. 70, 700–713 (2005).

    Google Scholar 

  135. Shishodia, S., Chaturvedi, M.M. & Aggarwal, B.B. Role of curcumin in cancer therapy. Curr. Probl. Cancer 31, 243–305 (2007).

    Google Scholar 

  136. Balasubramanyam, K. et al. Polyisoprenylated benzophenone, garcinol, a natural histone acetyltransferase inhibitor, represses chromatin transcription and alters global gene expression. J. Biol. Chem. 279, 33716–33726 (2004).

    Google Scholar 

  137. Sun, Y., Jiang, X., Chen, S. & Price, B.D. Inhibition of histone acetyltransferase activity by anacardic acid sensitizes tumor cells to ionizing radiation. FEBS Lett. 580, 4353–4356 (2006).

    Google Scholar 

  138. Stimson, L. et al. Isothiazolones as inhibitors of PCAF and p300 histone acetyltransferase activity. Mol. Cancer Ther. 4, 1521–1532 (2005).

    Google Scholar 

  139. Greiner, D., Bonaldi, T., Eskeland, R., Roemer, E. & Imhof, A. Identification of a specific inhibitor of the histone methyltransferase SU(VAR)3–9. Nat. Chem. Biol. 1, 143–145 (2005).

    Google Scholar 

  140. Isham, C.R. et al. Chaetocin: a promising new antimyeloma agent with in vitro and in vivo activity mediated via imposition of oxidative stress. Blood 109, 2579–2588 (2007).

    Google Scholar 

  141. Tan, J. et al. Pharmacologic disruption of polycomb-repressive complex 2–mediated gene repression selectively induces apoptosis in cancer cells. Genes Dev. 21, 1050–1063 (2007).

    Google Scholar 

  142. Cheng, D. et al. Small molecule regulators of protein arginine methyltransferases. J. Biol. Chem. 279, 23892–23899 (2004).

    Google Scholar 

  143. El Messaoudi, S. et al. Coactivator-associated arginine methyltransferase 1 (CARM1) is a positive regulator of the cyclin E1 gene. Proc. Natl. Acad. Sci. USA 103, 13351–13356 (2006).

    Google Scholar 

  144. Mai, A. et al. epigenetic multiple ligands: mixed histone/protein methyltransferase, acetyltransferase and class III deacetylase (sirtuin) inhibitors. J. Med. Chem. 51, 2279–2290 (2008).

    Google Scholar 

  145. Lee, M.G., Wynder, C., Schmidt, D.M., McCafferty, D.G. & Shiekhattar, R. Histone H3 lysine 4 demethylation is a target of nonselective antidepressive medications. Chem. Biol. 13, 563–567 (2006).

    Google Scholar 

  146. Dawson, M.A. et al. JAK2 phosphorylates histone H3Y41 and excludes HP1α from chromatin. Nature 461, 819–822 (2009).

    Google Scholar 

  147. Dar, A.A., Goff, L.W., Majid, S., Berlin, J. & El-Rifai, W. Aurora kinase inhibitors—rising stars in cancer therapeutics? Mol. Cancer Ther. 9, 268–278 (2010).

    Google Scholar 

  148. Hirota, T., Lipp, J.J., Toh, B.H. & Peters, J.M. Histone H3 serine 10 phosphorylation by aurora B causes HP1 dissociation from heterochromatin. Nature 438, 1176–1180 (2005).

    Google Scholar 

  149. den Hollander, J. et al. Aurora kinases A and B are up-regulated by Myc and are essential for maintenance of the malignant state. Blood 116, 1498–1505 (2010).

    Google Scholar 

  150. Görgün, G. et al. A novel aurora-A kinase inhibitor MLN8237 induces cytotoxicity and cell-cycle arrest in multiple myeloma. Blood 115, 5202–5213 (2010).

    Google Scholar 

  151. Steeghs, N. et al. Phase I pharmacokinetic and pharmacodynamic study of the aurora kinase inhibitor danusertib in patients with advanced or metastatic solid tumors. J. Clin. Oncol. 27, 5094–5101 (2009).

    Google Scholar 

  152. Yu, C. et al. Abrogation of MAPK and Akt signaling by AEE788 synergistically potentiates histone deacetylase inhibitor-induced apoptosis through reactive oxygen species generation. Clin. Cancer Res. 13, 1140–1148 (2007).

    Google Scholar 

  153. Zhang, B. et al. Effective targeting of quiescent chronic myelogenous leukemia stem cells by histone deacetylase inhibitors in combination with imatinib mesylate. Cancer Cell 17, 427–442 (2010).

    Google Scholar 

  154. Sharma, S.V. et al. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 141, 69–80 (2010).

    Google Scholar 

  155. Kantarjian, H.M. et al. Phase 2 study of romiplostim in patients with low- or intermediate-risk myelodysplastic syndrome receiving azacitidine therapy. Blood 116, 3163–3170 (2010).

    Google Scholar 

  156. Kanzaki, M. et al. Low concentrations of the histone deacetylase inhibitor, depsipeptide, enhance the effects of gemcitabine and docetaxel in hormone refractory prostate cancer cells. Oncol. Rep. 17, 761–767 (2007).

    Google Scholar 

  157. Yang, X., Lay, F., Han, H. & Jones, P.A. Targeting DNA methylation for epigenetic therapy. Trends Pharmacol. Sci. 31, 536–546 (2010).

    Google Scholar 

  158. Ma, X., Ezzeldin, H.H. & Diasio, R.B. Histone deacetylase inhibitors: current status and overview of recent clinical trials. Drugs 69, 1911–1934 (2009).

    Google Scholar 

  159. Geng, L. et al. Histone deacetylase (HDAC) inhibitor LBH589 increases duration of γ-H2AX foci and confines HDAC4 to the cytoplasm in irradiated non-small cell lung cancer. Cancer Res. 66, 11298–11304 (2006).

    Google Scholar 

  160. Beltran, A. et al. Re-activation of a dormant tumor suppressor gene maspin by designed transcription factors. Oncogene 26, 2791–2798 (2007).

    Google Scholar 

  161. Marchion, D.C., Bicaku, E., Daud, A.I., Sullivan, D.M. & Munster, P.N. In vivo synergy between topoisomerase II and histone deacetylase inhibitors: predictive correlates. Mol. Cancer Ther. 4, 1993–2000 (2005).

    Google Scholar 

  162. Brueckner, B. et al. Delivery of 5-azacytidine to human cancer cells by elaidic acid esterification increases therapeutic drug efficacy. Mol. Cancer Ther. 9, 1256–1264 (2010).

    Google Scholar 

  163. Li, Y. et al. The DNA methylome of human peripheral blood mononuclear cells. PLoS Biol. 8, e1000533 (2010).

    Google Scholar 

  164. Gilbert, J. et al. A phase I dose escalation and bioavailability study of oral sodium phenylbutyrate in patients with refractory solid tumor malignancies. Clin. Cancer Res. 7, 2292–2300 (2001).

    Google Scholar 

  165. Göttlicher, M. et al. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J. 20, 6969–6978 (2001).

    Google Scholar 

  166. Terao, Y. et al. Sodium butyrate induces growth arrest and senescence-like phenotypes in gynecologic cancer cells. Int. J. Cancer 94, 257–267 (2001).

    Google Scholar 

  167. Chen, S., Ye, J., Kijima, I. & Evans, D. The HDAC inhibitor LBH589 (panobinostat) is an inhibitory modulator of aromatase gene expression. Proc. Natl. Acad. Sci. USA 107, 11032–11037 (2010).

    Google Scholar 

  168. Khan, N. et al. Determination of the class and isoform selectivity of small-molecule histone deacetylase inhibitors. Biochem. J. 409, 581–589 (2008).

    Google Scholar 

  169. Qian, X. et al. Activity of the histone deacetylase inhibitor belinostat (PXD101) in preclinical models of prostate cancer. Int. J. Cancer 122, 1400–1410 (2008).

    Google Scholar 

  170. Steele, N.L. et al. A phase 1 pharmacokinetic and pharmacodynamic study of the histone deacetylase inhibitor belinostat in patients with advanced solid tumors. Clin. Cancer Res. 14, 804–810 (2008).

    Google Scholar 

  171. Itoh, Y., Suzuki, T. & Miyata, N. Isoform-selective histone deacetylase inhibitors. Curr. Pharm. Des. 14, 529–544 (2008).

    Google Scholar 

  172. Fournel, M. et al. MGCD0103, a novel isotype-selective histone deacetylase inhibitor, has broad spectrum antitumor activity in vitro and in vivo. Mol. Cancer Ther. 7, 759–768 (2008).

    Google Scholar 

  173. Hess-Stumpp, H., Bracker, T.U., Henderson, D. & Politz, O. MS-275, a potent orally available inhibitor of histone deacetylases—the development of an anticancer agent. Int. J. Biochem. Cell Biol. 39, 1388–1405 (2007).

    Google Scholar 

  174. Lucas, D.M. et al. The histone deacetylase inhibitor MS-275 induces caspase-dependent apoptosis in B-cell chronic lymphocytic leukemia cells. Leukemia 18, 1207–1214 (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manel Esteller.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rodríguez-Paredes, M., Esteller, M. Cancer epigenetics reaches mainstream oncology. Nat Med 17, 330–339 (2011). https://doi.org/10.1038/nm.2305

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2305

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing