Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Central mechanisms of pathological pain

Abstract

Chronic pain is a major challenge to clinical practice and basic science. The peripheral and central neural networks that mediate nociception show extensive plasticity in pathological disease states. Disease-induced plasticity can occur at both structural and functional levels and is manifest as changes in individual molecules, synapses, cellular function and network activity. Recent work has yielded a better understanding of communication within the neural matrix of physiological pain and has also brought important advances in concepts of injury-induced hyperalgesia and tactile allodynia and how these might contribute to the complex, multidimensional state of chronic pain. This review focuses on the molecular determinants of network plasticity in the central nervous system (CNS) and discusses their relevance to the development of new therapeutic approaches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pain circuits.
Figure 2: Disease-induced functional and structural plasticity in neural substrates of pain.
Figure 3: Spinal mechanisms of physiological pain and disease-induced pain hypersensitivity.
Figure 4: Overview of typical signaling pathways used by pronociceptive molecules that mediate disease-induced pain hypersensitivity.

Similar content being viewed by others

References

  1. Darwin, C. The Expression of the Emotions in Man and Animals (Murray, J., London, 1872).

  2. Todd, E.M. & Kucharski, A. Pain: historical perspectives. in Principles and Practice of Pain Medicine (eds. Warfield, C.A. & Bajwa, Z.H.) 1–10 (McGraw-Hill, 2004).

  3. Melzack, R. & Wall, P.D. Pain mechanisms: a new theory. Science 150, 971–979 (1965).

    Article  CAS  PubMed  Google Scholar 

  4. Baron, R. Neuropathic pain: a clinical perspective. Handb. Exp. Pharmacol. 194, 3–30 (2009).

    Article  CAS  Google Scholar 

  5. King, T. et al. Unmasking the tonic-aversive state in neuropathic pain. Nat. Neurosci. 12, 1364–1366 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kurejova, M. et al. An improved behavioural assay demonstrates that ultrasound vocalizations constitute a reliable indicator of chronic cancer pain and neuropathic pain. Mol. Pain 6, 18 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Woolf, C.J. & Salter, M.W. Neuronal plasticity: increasing the gain in pain. Science 288, 1765–1769 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Ikeda, H., Heinke, B., Ruscheweyh, R. & Sandkuhler, J. Synaptic plasticity in spinal lamina I projection neurons that mediate hyperalgesia. Science 299, 1237–1240 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Toyoda, H. et al. Roles of the AMPA receptor subunit GluA1 but not GluA2 in synaptic potentiation and activation of ERK in the anterior cingulate cortex. Mol. Pain 5, 46 (2009).

    PubMed  PubMed Central  Google Scholar 

  10. Woolf, C.J. Evidence for a central component of post-injury pain hypersensitivity. Nature 306, 686–688 (1983).

    Article  CAS  PubMed  Google Scholar 

  11. Price, D.D. Psychological and neural mechanisms of the affective dimension of pain. Science 288, 1769–1772 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Luo, C., Seeburg, P.H., Sprengel, R. & Kuner, R. Activity-dependent potentiation of calcium signals in spinal sensory networks in inflammatory pain states. Pain 140, 358–367 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Schoffnegger, D., Ruscheweyh, R. & Sandkuhler, J. Spread of excitation across modality borders in spinal dorsal horn of neuropathic rats. Pain 135, 300–310 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Ji, R.R., Kohno, T., Moore, K.A. & Woolf, C.J. Central sensitization and LTP: do pain and memory share similar mechanisms? Trends Neurosci. 26, 696–705 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Sandkühler, J. Models and mechanisms of hyperalgesia and allodynia. Physiol. Rev. 89, 707–758 (2009).

    Article  PubMed  CAS  Google Scholar 

  16. Pezet, S. & McMahon, S.B. Neurotrophins: mediators and modulators of pain. Annu. Rev. Neurosci. 29, 507–538 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Milenkovic, N. et al. Nociceptive tuning by stem cell factor/c-Kit signaling. Neuron 56, 893–906 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Burnashev, N., Monyer, H., Seeburg, P.H. & Sakmann, B. Divalent ion permeability of AMPA receptor channels is dominated by the edited form of a single subunit. Neuron 8, 189–198 (1992).

    Article  CAS  PubMed  Google Scholar 

  19. Tong, C.K. & MacDermott, A.B. Both Ca2+-permeable and -impermeable AMPA receptors contribute to primary synaptic drive onto rat dorsal horn neurons. J. Physiol. (Lond.) 575, 133–144 (2006).

    Article  CAS  Google Scholar 

  20. Gu, J.G., Albuquerque, C., Lee, C.J. & MacDermott, A.B. Synaptic strengthening through activation of Ca2+-permeable AMPA receptors. Nature 381, 793–796 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Hartmann, B. et al. The AMPA receptor subunits GluR-A and GluR-B reciprocally modulate spinal synaptic plasticity and inflammatory pain. Neuron 44, 637–650 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Xiao, B., Tu, J.C. & Worley, P.F. Homer: a link between neural activity and glutamate receptor function. Curr. Opin. Neurobiol. 10, 370–374 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Tappe, A. et al. Synaptic scaffolding protein Homer1a protects against chronic inflammatory pain. Nat. Med. 12, 677–681 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Li, P. et al. AMPA receptor-PDZ interactions in facilitation of spinal sensory synapses. Nat. Neurosci. 2, 972–977 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Garry, E.M. et al. Specific involvement in neuropathic pain of AMPA receptors and adapter proteins for the GluR2 subunit. Mol. Cell. Neurosci. 24, 10–22 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Park, J.S. et al. Persistent inflammation induces GluR2 internalization via NMDA receptor–triggered PKC activation in dorsal horn neurons. J. Neurosci. 29, 3206–3219 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Galan, A., Laird, J.M. & Cervero, F. In vivo recruitment by painful stimuli of AMPA receptor subunits to the plasma membrane of spinal cord neurons. Pain 112, 315–323 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Miletic, G., Dumitrascu, C.I., Honstad, C.E., Micic, D. & Miletic, V. Loose ligation of the rat sciatic nerve elicits early accumulation of Shank1 protein in the post-synaptic density of spinal dorsal horn neurons. Pain 149, 152–159 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Garry, E.M. et al. Neuropathic sensitization of behavioral reflexes and spinal NMDA receptor/CaM kinase II interactions are disrupted in PSD-95 mutant mice. Curr. Biol. 13, 321–328 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Dreyer, J. et al. Nitric oxide synthase (NOS)-interacting protein interacts with neuronal NOS and regulates its distribution and activity. J. Neurosci. 24, 10454–10465 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wettschureck, N. & Offermanns, S. Mammalian G proteins and their cell type specific functions. Physiol. Rev. 85, 1159–1204 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Willis, W.D. Role of neurotransmitters in sensitization of pain responses. Ann. NY Acad. Sci. 933, 142–156 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Gold, M.S. & Gebhart, G.F. Nociceptor sensitization in pain pathogenesis. Nat. Med. advance online publication, doi:10.1038/nm.2235 (14 October 2010).

  34. Fang, M., Kovacs, K.J., Fisher, L.L. & Larson, A.A. Thrombin inhibits NMDA-mediated nociceptive activity in the mouse: possible mediation by endothelin. J. Physiol. (Lond.) 549, 903–917 (2003).

    Article  CAS  Google Scholar 

  35. Clark, A.K. et al. Inhibition of spinal microglial cathepsin S for the reversal of neuropathic pain. Proc. Natl. Acad. Sci. USA 104, 10655–10660 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vergnolle, N. et al. Proteinase-activated receptor-2 and hyperalgesia: a novel pain pathway. Nat. Med. 7, 821–826 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Narita, M. et al. Protease-activated receptor-1 and platelet-derived growth factor in spinal cord neurons are implicated in neuropathic pain after nerve injury. J. Neurosci. 25, 10000–10009 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yamanaka, H. et al. Tissue plasminogen activator in primary afferents induces dorsal horn excitability and pain response after peripheral nerve injury. Eur. J. Neurosci. 19, 93–102 (2004).

    Article  PubMed  Google Scholar 

  39. Kawasaki, Y. et al. Distinct roles of matrix metalloproteases in the early- and late-phase development of neuropathic pain. Nat. Med. 14, 331–336 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dai, Y. et al. Proteinase-activated receptor 2–mediated potentiation of transient receptor potential vanilloid subfamily 1 activity reveals a mechanism for proteinase-induced inflammatory pain. J. Neurosci. 24, 4293–4299 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Clark, A.K., Yip, P.K. & Malcangio, M. The liberation of fractalkine in the dorsal horn requires microglial cathepsin S. J. Neurosci. 29, 6945–6954 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. McMahon, S.B. & Malcangio, M. Current challenges in glia-pain biology. Neuron 64, 46–54 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Zylka, M.J. et al. Prostatic acid phosphatase is an ectonucleotidase and suppresses pain by generating adenosine. Neuron 60, 111–122 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Inoue, M. et al. Initiation of neuropathic pain requires lysophosphatidic acid receptor signaling. Nat. Med. 10, 712–718 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Ji, R.R., Baba, H., Brenner, G.J. & Woolf, C.J. Nociceptive-specific activation of ERK in spinal neurons contributes to pain hypersensitivity. Nat. Neurosci. 2, 1114–1119 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Hu, H.J. et al. The kv4.2 potassium channel subunit is required for pain plasticity. Neuron 50, 89–100 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Cheng, H.Y. et al. DREAM is a critical transcriptional repressor for pain modulation. Cell 108, 31–43 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Derjean, D. et al. Dynamic balance of metabotropic inputs causes dorsal horn neurons to switch functional states. Nat. Neurosci. 6, 274–281 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Moore, K.A. et al. Partial peripheral nerve injury promotes a selective loss of GABAergic inhibition in the superficial dorsal horn of the spinal cord. J. Neurosci. 22, 6724–6731 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Scholz, J. et al. Blocking caspase activity prevents transsynaptic neuronal apoptosis and the loss of inhibition in lamina II of the dorsal horn after peripheral nerve injury. J. Neurosci. 25, 7317–7323 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Harvey, R.J. et al. GlyR α3: an essential target for spinal PGE2-mediated inflammatory pain sensitization. Science 304, 884–887 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Coull, J.A. et al. BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 438, 1017–1021 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Coull, J.A. et al. Trans-synaptic shift in anion gradient in spinal lamina I neurons as a mechanism of neuropathic pain. Nature 424, 938–942 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Lu, Y., Zheng, J., Xiong, L., Zimmermann, M. & Yang, J. Spinal cord injury-induced attenuation of GABAergic inhibition in spinal dorsal horn circuits is associated with down-regulation of the chloride transporter KCC2 in rat. J. Physiol. (Lond.) 586, 5701–5715 (2008).

    Article  CAS  Google Scholar 

  55. Jolivalt, C.G., Lee, C.A., Ramos, K.M. & Calcutt, N.A. Allodynia and hyperalgesia in diabetic rats are mediated by GABA and depletion of spinal potassium-chloride co-transporters. Pain 140, 48–57 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Knabl, J. et al. Reversal of pathological pain through specific spinal GABAA receptor subtypes. Nature 451, 330–334 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Schaible, H.G., Ebersberger, A. & Von Banchet, G.S. Mechanisms of pain in arthritis. Ann. NY Acad. Sci. 966, 343–354 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Abrahamsen, B. et al. The cell and molecular basis of mechanical, cold, and inflammatory pain. Science 321, 702–705 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Shir, Y. & Seltzer, Z. A-fibers mediate mechanical hyperesthesia and allodynia and C-fibers mediate thermal hyperalgesia in a new model of causalgiform pain disorders in rats. Neurosci. Lett. 115, 62–67 (1990).

    Article  CAS  PubMed  Google Scholar 

  60. Seal, R.P. et al. Injury-induced mechanical hypersensitivity requires C-low threshold mechanoreceptors. Nature 462, 651–655 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Neumann, S., Doubell, T.P., Leslie, T. & Woolf, C.J. Inflammatory pain hypersensitivity mediated by phenotypic switch in myelinated primary sensory neurons. Nature 384, 360–364 (1996).

    Article  CAS  PubMed  Google Scholar 

  62. Bao, L. et al. Peripheral axotomy induces only very limited sprouting of coarse myelinated afferents into inner lamina II of rat spinal cord. Eur. J. Neurosci. 16, 175–185 (2002).

    Article  PubMed  Google Scholar 

  63. Zhang, Z., Hefferan, M.P. & Loomis, C.W. Topical bicuculline to the rat spinal cord induces highly localized allodynia that is mediated by spinal prostaglandins. Pain 92, 351–361 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Baba, H. et al. Removal of GABAergic inhibition facilitates polysynaptic A fiber-mediated excitatory transmission to the superficial spinal dorsal horn. Mol. Cell. Neurosci. 24, 818–830 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Torsney, C., Anderson, R.L., Ryce-Paul, K.A. & MacDermott, A.B. Characterization of sensory neuron subpopulations selectively expressing green fluorescent protein in phosphodiesterase 1C BAC transgenic mice. Mol. Pain 2, 17 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Kolhekar, R., Murphy, S. & Gebhart, G.F. Thalamic NMDA receptors modulate inflammation-produced hyperalgesia in the rat. Pain 71, 31–40 (1997).

    Article  CAS  PubMed  Google Scholar 

  67. Cheong, E. et al. Tuning thalamic firing modes via simultaneous modulation of T- and L-type Ca2+ channels controls pain sensory gating in the thalamus. J. Neurosci. 28, 13331–13340 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Jeon, D. et al. Observational fear learning involves affective pain system and Cav1.2 Ca2+ channels in ACC. Nat. Neurosci. 13, 482–488 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cao, H. et al. Activation of extracellular signal-regulated kinase in the anterior cingulate cortex contributes to the induction and expression of affective pain. J. Neurosci. 29, 3307–3321 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Fu, Y. & Neugebauer, V. Differential mechanisms of CRF1 and CRF2 receptor functions in the amygdala in pain-related synaptic facilitation and behavior. J. Neurosci. 28, 3861–3876 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Neugebauer, V., Li, W., Bird, G.C., Bhave, G. & Gereau, R.W. Synaptic plasticity in the amygdala in a model of arthritic pain: differential roles of metabotropic glutamate receptors 1 and 5. J. Neurosci. 23, 52–63 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Delaney, A.J., Crane, J.W. & Sah, P. Noradrenaline modulates transmission at a central synapse by a presynaptic mechanism. Neuron 56, 880–892 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Eippert, F. et al. Activation of the opioidergic descending pain control system underlies placebo analgesia. Neuron 63, 533–543 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Porreca, F., Ossipov, M.H. & Gebhart, G.F. Chronic pain and medullary descending facilitation. Trends Neurosci. 25, 319–325 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Heinricher, M.M., Tavares, I., Leith, J.L. & Lumb, B.M. Descending control of nociception: specificity, recruitment and plasticity. Brain Res. Rev. 60, 214–225 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Zhao, Z.Q. et al. Mice lacking central serotonergic neurons show enhanced inflammatory pain and an impaired analgesic response to antidepressant drugs. J. Neurosci. 27, 6045–6053 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhao, Z.Q. et al. Central serotonergic neurons are differentially required for opioid analgesia but not for morphine tolerance or morphine reward. Proc. Natl. Acad. Sci. USA 104, 14519–14524 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhang, W. et al. Neuropathic pain is maintained by brainstem neurons co-expressing opioid and cholecystokinin receptors. Brain 132, 778–787 (2009).

    Article  PubMed  Google Scholar 

  79. Wei, F., Guo, W., Zou, S., Ren, K. & Dubner, R. Supraspinal glial-neuronal interactions contribute to descending pain facilitation. J. Neurosci. 28, 10482–10495 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Guo, W. et al. Supraspinal brain-derived neurotrophic factor signaling: a novel mechanism for descending pain facilitation. J. Neurosci. 26, 126–137 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Suzuki, R., Morcuende, S., Webber, M., Hunt, S.P. & Dickenson, A.H. Superficial NK1-expressing neurons control spinal excitability through activation of descending pathways. Nat. Neurosci. 5, 1319–1326 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Fields, H.L. Pain modulation: expectation, opioid analgesia and virtual pain. Prog. Brain Res. 122, 245–253 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Edelmayer, R.M. et al. Medullary pain facilitating neurons mediate allodynia in headache-related pain. Ann. Neurol. 65, 184–193 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Li, P. & Zhuo, M. Silent glutamatergic synapses and nociception in mammalian spinal cord. Nature 393, 695–698 (1998).

    Article  CAS  PubMed  Google Scholar 

  85. Wei, F. et al. Molecular depletion of descending serotonin unmasks its novel facilitatory role in the development of persistent pain. J. Neurosci. 30, 8624–8636 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Seminowicz, D.A. et al. Regional gray matter density changes in brains of patients with irritable bowel syndrome. Gastroenterology 139, 48–57 (2010).

    Article  PubMed  Google Scholar 

  87. May, A. Morphing voxels: the hype around structural imaging of headache patients. Brain 132, 1419–1425 (2009).

    Article  PubMed  Google Scholar 

  88. Rodriguez-Raecke, R., Niemeier, A., Ihle, K., Ruether, W. & May, A. Brain gray matter decrease in chronic pain is the consequence and not the cause of pain. J. Neurosci. 29, 13746–13750 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Seminowicz, D.A. et al. MRI structural brain changes associated with sensory and emotional function in a rat model of long-term neuropathic pain. Neuroimage 47, 1007–1014 (2009).

    Article  PubMed  Google Scholar 

  90. Schweizerhof, M. et al. Hematopoietic colony-stimulating factors mediate tumor-nerve interactions and bone cancer pain. Nat. Med. 15, 802–807 (2009).

    Article  CAS  PubMed  Google Scholar 

  91. Ceyhan, G.O. et al. Pancreatic neuropathy and neuropathic pain—a comprehensive pathomorphological study of 546 cases. Gastroenterology 136, 177–186 (2009).

    Article  PubMed  Google Scholar 

  92. Siau, C., Xiao, W. & Bennett, G.J. Paclitaxel- and vincristine-evoked painful peripheral neuropathies: loss of epidermal innervation and activation of Langerhans cells. Exp. Neurol. 201, 507–514 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Cain, D.M. et al. Functional interactions between tumor and peripheral nerve: changes in excitability and morphology of primary afferent fibers in a murine model of cancer pain. J. Neurosci. 21, 9367–9376 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hofer, S.B. & Bonhoeffer, T. Dendritic spines: the stuff that memories are made of? Curr. Biol. 20, R157–R159 (2010).

    Article  CAS  PubMed  Google Scholar 

  95. Saneyoshi, T., Fortin, D.A. & Soderling, T.R. Regulation of spine and synapse formation by activity-dependent intracellular signaling pathways. Curr. Opin. Neurobiol. 20, 108–115 (2010).

    Article  CAS  PubMed  Google Scholar 

  96. Yang, G., Pan, F. & Gan, W.B. Stably maintained dendritic spines are associated with lifelong memories. Nature 462, 920–924 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Tan, A.M. et al. Neuropathic pain memory is maintained by Rac1-regulated dendritic spine remodeling after spinal cord injury. J. Neurosci. 28, 13173–13183 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hotulainen, P. & Hoogenraad, C.C. Actin in dendritic spines: connecting dynamics to function. J. Cell Biol. 189, 619–629 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Luo, L. Rho GTPases in neuronal morphogenesis. Nat. Rev. Neurosci. 1, 173–180 (2000).

    Article  CAS  PubMed  Google Scholar 

  100. Eroglu, C. et al. Gabapentin receptor alpha2delta-1 is a neuronal thrombospondin receptor responsible for excitatory CNS synaptogenesis. Cell 139, 380–392 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I thank R. Lefaucheur for secretarial assistance and members of the laboratory for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohini Kuner.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuner, R. Central mechanisms of pathological pain. Nat Med 16, 1258–1266 (2010). https://doi.org/10.1038/nm.2231

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2231

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing