Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Inhibition of aldehyde dehydrogenase-2 suppresses cocaine seeking by generating THP, a cocaine use–dependent inhibitor of dopamine synthesis

An Addendum to this article was published on 04 February 2011

This article has been updated


There is no effective treatment for cocaine addiction despite extensive knowledge of the neurobiology of drug addiction1,2,3,4. Here we show that a selective aldehyde dehydrogenase-2 (ALDH-2) inhibitor, ALDH2i, suppresses cocaine self-administration in rats and prevents cocaine- or cue-induced reinstatement in a rat model of cocaine relapse-like behavior. We also identify a molecular mechanism by which ALDH-2 inhibition reduces cocaine-seeking behavior: increases in tetrahydropapaveroline (THP) formation due to inhibition of ALDH-2 decrease cocaine-stimulated dopamine production and release in vitro and in vivo. Cocaine increases extracellular dopamine concentration, which activates dopamine D2 autoreceptors to stimulate cAMP-dependent protein kinase A (PKA) and protein kinase C (PKC) in primary ventral tegmental area (VTA) neurons. PKA and PKC phosphorylate and activate tyrosine hydroxylase, further increasing dopamine synthesis in a positive-feedback loop. Monoamine oxidase converts dopamine to 3,4-dihydroxyphenylacetaldehyde (DOPAL), a substrate for ALDH-2. Inhibition of ALDH-2 enables DOPAL to condense with dopamine to form THP in VTA neurons. THP selectively inhibits phosphorylated (activated) tyrosine hydroxylase to reduce dopamine production via negative-feedback signaling. Reducing cocaine- and craving-associated increases in dopamine release seems to account for the effectiveness of ALDH2i in suppressing cocaine-seeking behavior. Selective inhibition of ALDH-2 may have therapeutic potential for treating human cocaine addiction and preventing relapse.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ALDH2i reduces intravenous cocaine self-administration, cocaine-primed or cue-induced reinstatement and methamphetamine-induced reinstatement in Sprague Dawley rats.
Figure 2: ALDH2i decreases cocaine-induced dopamine (DA) production and increases THP abundance in PC12 cells.
Figure 3: Cocaine activates PKA and PKC to phosphorylate tyrosine hydroxylase and increase dopamine production in VTA neurons.
Figure 4: ALDH2i increases THP production to inhibit tyrosine hydroxylase activity and decrease dopamine production in VTA in cocaine-addicted rats.

Change history

  • 26 August 2010

     In the version of this article initially published online, Zhan Jiang's name was incorrectly spelled as Zhang Jiang. The error has been corrected for the print, PDF and HTML versions of this article.

  • 13 January 2010

     Nature Medicine has become aware that CVT-10216, the selective ALDH-2 inhibitor originally reported in this study, is not available from Gilead Sciences, the institution to which the corresponding author of the paper is affiliated. We wish to alert our readers of this situation, as it contravenes our editorial policy on material sharing (


  1. Koob, G.F., Kenneth Lloyd, G. & Mason, B.J. Development of pharmacotherapies for drug addiction: a Rosetta stone approach. Nat. Rev. Drug Discov. 8, 500–515 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Kalivas, P.W. The glutamate homeostasis hypothesis of addiction. Nat. Rev. Neurosci. 10, 561–572 (2009).

    CAS  PubMed  Google Scholar 

  3. Nestler, E.J. Is there a common molecular pathway for addiction? Nat. Neurosci. 8, 1445–1449 (2005).

    CAS  PubMed  Google Scholar 

  4. Volkow, N.D. & Li, T.K. Drug addiction: the neurobiology of behaviour gone awry. Nat. Rev. Neurosci. 5, 963–970 (2004).

    CAS  PubMed  Google Scholar 

  5. Sofuoglu, M. & Kosten, T.R. Emerging pharmacological strategies in the fight against cocaine addiction. Expert Opin. Emerg. Drugs 11, 91–98 (2006).

    CAS  PubMed  Google Scholar 

  6. Suh, J.J., Pettinati, H.M., Kampman, K.M. & O'Brien, C.P. The status of disulfiram: a half of a century later. J. Clin. Psychopharmacol. 26, 290–302 (2006).

    CAS  PubMed  Google Scholar 

  7. Gaval-Cruz, M. & Weinshenker, D. Mechanisms of disulfiram-induced cocaine abstinence: antabuse and cocaine relapse. Mol. Interv. 9, 175–187 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Arolfo, M.P. et al. Suppression of heavy drinking and alcohol seeking by a selective ALDH-2 inhibitor. Alcohol. Clin. Exp. Res. 33, 1935–1944 (2009).

    PubMed  PubMed Central  Google Scholar 

  9. Keung, W.M., Lazo, O., Kunze, L. & Vallee, B.L. Daidzin suppresses ethanol consumption by Syrian golden hamsters without blocking acetaldehyde metabolism. Proc. Natl. Acad. Sci. USA 92, 8990–8993 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Bossert, J.M., Ghitza, U.E., Lu, L., Epstein, D.H. & Shaham, Y. Neurobiology of relapse to heroin and cocaine seeking: an update and clinical implications. Eur. J. Pharmacol. 526, 36–50 (2005).

    CAS  PubMed  Google Scholar 

  11. Hyman, S.E. & Malenka, R.C. Addiction and the brain: the neurobiology of compulsion and its persistence. Nat. Rev. Neurosci. 2, 695–703 (2001).

    CAS  PubMed  Google Scholar 

  12. Koob, G.F., Sanna, P.P. & Bloom, F.E. Neuroscience of addiction. Neuron 21, 467–476 (1998).

    CAS  PubMed  Google Scholar 

  13. Wise, R.A. Brain reward circuitry: insights from unsensed incentives. Neuron 36, 229–240 (2002).

    CAS  PubMed  Google Scholar 

  14. Balter, M. New clues to brain dopamine control, cocaine addiction. Science 271, 909 (1996).

    CAS  PubMed  Google Scholar 

  15. Berke, J.D. & Hyman, S.E. Addiction, dopamine and the molecular mechanisms of memory. Neuron 25, 515–532 (2000).

    CAS  PubMed  Google Scholar 

  16. McCaffery, P. & Drager, U.C. High levels of a retinoic acid–generating dehydrogenase in the meso-telencephalic dopamine system. Proc. Natl. Acad. Sci. USA 91, 7772–7776 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Eisenhofer, G., Kopin, I.J. & Goldstein, D.S. Catecholamine metabolism: a contemporary view with implications for physiology and medicine. Pharmacol. Rev. 56, 331–349 (2004).

    CAS  PubMed  Google Scholar 

  18. Lamensdorf, I. et al. 3,4-Dihydroxyphenylacetaldehyde potentiates the toxic effects of metabolic stress in PC12 cells. Brain Res. 868, 191–201 (2000).

    CAS  PubMed  Google Scholar 

  19. Marchitti, S.A., Deitrich, R.A. & Vasiliou, V. Neurotoxicity and metabolism of the catecholamine-derived 3,4-dihydroxyphenylacetaldehyde and 3,4-dihydroxyphenylglycolaldehyde: the role of aldehyde dehydrogenase. Pharmacol Rev. 59, 125–150 (2007).

    CAS  PubMed  Google Scholar 

  20. Kim, Y.M., Kim, M.N., Lee, J.J. & Lee, M.K. Inhibition of dopamine biosynthesis by tetrahydropapaveroline. Neurosci. Lett. 386, 1–4 (2005).

    CAS  PubMed  Google Scholar 

  21. Dunkley, P.R., Bobrovskaya, L., Graham, M.E., von Nagy-Felsobuki, E.I. & Dickson, P.W. Tyrosine hydroxylase phosphorylation: regulation and consequences. J. Neurochem. 91, 1025–1043 (2004).

    CAS  PubMed  Google Scholar 

  22. Brodie, M.S. & Dunwiddie, T.V. Cocaine effects in the ventral tegmental area: evidence for an indirect dopaminergic mechanism of action. Naunyn Schmiedebergs Arch. Pharmacol. 342, 660–665 (1990).

    CAS  PubMed  Google Scholar 

  23. Chen, S.Y., Burger, R.I. & Reith, M.E. Extracellular dopamine in the rat ventral tegmental area and nucleus accumbens following ventral tegmental infusion of cocaine. Brain Res. 729, 294–296 (1996).

    CAS  PubMed  Google Scholar 

  24. Lacey, M.G., Mercuri, N.B. & North, R.A. Actions of cocaine on rat dopaminergic neurones in vitro. Br. J. Pharmacol. 99, 731–735 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Yao, L. et al. Dopamine and ethanol cause translocation of epsilonPKC associated with epsilonRACK: cross-talk between cAMP-dependent protein kinase A and protein kinase C signaling pathways. Mol. Pharmacol. 73, 1105–1112 (2008).

    CAS  PubMed  Google Scholar 

  26. Stuber, G.D. et al. Reward-predictive cues enhance excitatory synaptic strength onto midbrain dopamine neurons. Science 321, 1690–1692 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Myers, R.D. Anatomical 'circuitry' in the brain mediating alcohol drinking revealed by THP-reactive sites in the limbic system. Alcohol 7, 449–459 (1990).

    CAS  PubMed  Google Scholar 

  28. Sombers, L.A., Beyene, M., Carelli, R.M. & Wightman, R.M. Synaptic overflow of dopamine in the nucleus accumbens arises from neuronal activity in the ventral tegmental area. J. Neurosci. 29, 1735–1742 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Nestler, E.J. The neurobiology of cocaine addiction. Sci. Pract. Perspect. 3, 4–10 (2005).

    PubMed  PubMed Central  Google Scholar 

  30. Roberts, D.C. & Koob, G.F. Disruption of cocaine self-administration following 6-hydroxydopamine lesions of the ventral tegmental area in rats. Pharmacol. Biochem. Behav. 17, 901–904 (1982).

    CAS  PubMed  Google Scholar 

  31. Dickinson, S.D. et al. Dopamine D2 receptor–deficient mice exhibit decreased dopamine transporter function but no changes in dopamine release in dorsal striatum. J. Neurochem. 72, 148–156 (1999).

    CAS  PubMed  Google Scholar 

  32. Hahn, J., Kullmann, P.H., Horn, J.P. & Levitan, E.S. D2 autoreceptors chronically enhance dopamine neuron pacemaker activity. J. Neurosci. 26, 5240–5247 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Negus, S.S., Mello, N.K., Lamas, X. & Mendelson, J.H. Acute and chronic effects of flupenthixol on the discriminative stimulus and reinforcing effects of cocaine in rhesus monkeys. J. Pharmacol. Exp. Ther. 278, 879–890 (1996).

    CAS  PubMed  Google Scholar 

  34. Rassnick, S., Pulvirenti, L. & Koob, G.F. Oral ethanol self-administration in rats is reduced by the administration of dopamine and glutamate receptor antagonists into the nucleus accumbens. Psychopharmacology (Berl.) 109, 92–98 (1992).

    CAS  Google Scholar 

  35. Saeedi, H., Remington, G. & Christensen, B.K. Impact of haloperidol, a dopamine D2 antagonist, on cognition and mood. Schizophr. Res. 85, 222–231 (2006).

    PubMed  Google Scholar 

  36. Tinsley, R.B. et al. Dopamine D2 receptor knockout mice develop features of Parkinson disease. Ann. Neurol. 66, 472–484 (2009).

    CAS  PubMed  Google Scholar 

  37. Inoue, Y. et al. Nicotine and ethanol activate protein kinase A synergistically via Gi βγ subunits in nucleus accumbens/ventral tegmental cocultures: the role of dopamine D1/D2 and adenosine A2A receptors. J. Pharmacol. Exp. Ther. 322, 23–29 (2007).

    CAS  PubMed  Google Scholar 

  38. Yamauchi, T. & Fujisawa, H. A simple and sensitive fluorometric assay for tyrosine hydroxylase. Anal. Biochem. 89, 143–150 (1978).

    CAS  PubMed  Google Scholar 

  39. Sherald, A.F., Sparrow, J.C. & Wright, T.R. A spectrophotometric assay for Drosophila dopa decarboxylase. Anal. Biochem. 56, 300–305 (1973).

    CAS  PubMed  Google Scholar 

  40. Nagatsu, T. & Udenfriend, S. Photometric assay of dopamine-β-hydroxylase activity in human blood. Clin. Chem. 18, 980–983 (1972).

    CAS  PubMed  Google Scholar 

  41. McFarland, K., Davidge, S.B., Lapish, C.C. & Kalivas, P.W. Limbic and motor circuitry underlying footshock-induced reinstatement of cocaine-seeking behavior. J. Neurosci. 24, 1551–1560 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


We thank W.M. Keung for valuable discussions, G. Koob and M. Miles for critical reading of the manuscript, A. Dinkins and K. Wischerath for animal training and D. Soohoo for preparation of the ALDH2i formulation.

Author information

Authors and Affiliations



L.Y. and I.D. designed and supervised the project, analyzed the data and wrote the manuscript. P.F. designed, carried out and analyzed molecular and cell biology studies. M.A. designed, performed and analyzed behavioral studies. Z.J. performed the cell biology experiments. M.F.O. carried out cocaine dose-response experiments. J.Z. and team synthesized CVT-10216. K.L. supervised and H.-L.S. and N.C. performed mass spectrometric analysis of in vitro dopamine and THP. J.L. and H.-Y.K. developed a mass spectrometric analysis method for dopamine and THP and determined their in vivo abundance. J.S. contributed to design and review of PC12 data. B.B. contributed to design and review of in vivo data.

Corresponding author

Correspondence to Lina Yao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4, Supplementary Tables 1 and 2 and Supplementary Methods (PDF 255 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, L., Fan, P., Arolfo, M. et al. Inhibition of aldehyde dehydrogenase-2 suppresses cocaine seeking by generating THP, a cocaine use–dependent inhibitor of dopamine synthesis. Nat Med 16, 1024–1028 (2010).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing