Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

MicroRNA-132–mediated loss of p120RasGAP activates the endothelium to facilitate pathological angiogenesis


Although it is well established that tumors initiate an angiogenic switch, the molecular basis of this process remains incompletely understood. Here we show that the miRNA miR-132 acts as an angiogenic switch by targeting p120RasGAP in the endothelium and thereby inducing neovascularization. We identified miR-132 as a highly upregulated miRNA in a human embryonic stem cell model of vasculogenesis and found that miR-132 was highly expressed in the endothelium of human tumors and hemangiomas but was undetectable in normal endothelium. Ectopic expression of miR-132 in endothelial cells in vitro increased their proliferation and tube-forming capacity, whereas intraocular injection of an antagomir targeting miR-132, anti–miR-132, reduced postnatal retinal vascular development in mice. Among the top-ranking predicted targets of miR-132 was p120RasGAP, which we found to be expressed in normal but not tumor endothelium. Endothelial expression of miR-132 suppressed p120RasGAP expression and increased Ras activity, whereas a miRNA-resistant version of p120RasGAP reversed the vascular response induced by miR-132. Notably, administration of anti–miR-132 inhibited angiogenesis in wild-type mice but not in mice with an inducible deletion of Rasa1 (encoding p120RasGAP). Finally, vessel-targeted nanoparticle delivery1 of anti–miR-132 restored p120RasGAP expression in the tumor endothelium, suppressed angiogenesis and decreased tumor burden in an orthotopic xenograft mouse model of human breast carcinoma. We conclude that miR-132 acts as an angiogenic switch by suppressing endothelial p120RasGAP expression, leading to Ras activation and the induction of neovascularization, whereas the application of anti–miR-132 inhibits neovascularization by maintaining vessels in the resting state.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: miR-132 regulates growth factor–mediated angiogenesis in vitro and in vivo.
Figure 2: Endothelial activation mediated by miR-132 depends on its downregulation of p120RasGAP.
Figure 3: miR-132 and p120RasGAP are expressed reciprocally in quiescent versus proliferative endothelium.
Figure 4: Targeted delivery of anti–miR-132 decreases tumor burden by restoring endothelial p120RasGAP.


  1. Murphy, E.A. et al. Nanoparticle-mediated drug delivery to tumor vasculature suppresses metastasis. Proc. Natl. Acad. Sci. USA 105, 9343–9348 (2008).

    Article  CAS  Google Scholar 

  2. Hobson, B. & Denekamp, J. Endothelial proliferation in tumours and normal tissues: continuous labelling studies. Br. J. Cancer 49, 405–413 (1984).

    Article  CAS  Google Scholar 

  3. Folkman, J. The role of angiogenesis in tumor growth. Semin. Cancer Biol. 3, 65–71 (1992).

    CAS  PubMed  Google Scholar 

  4. Fish, J.E. & Srivastava, D. MicroRNAs: opening a new vein in angiogenesis research. Sci. Signal. 2, pe1 (2009).

    Article  Google Scholar 

  5. Lindquist, J.N., Cheresh, D.A. & Snyder, E.Y. Derivation of vasculature from embryonic stem cells. Curr. Protoc. Stem Cell Biol. 12, 1.1F.9.1–1.1F.9.6 (2010).

    Google Scholar 

  6. Kelly, M.A. & Hirschi, K.K. Signaling hierarchy regulating human endothelial cell development. Arterioscler. Thromb. Vasc. Biol. 29, 718–724 (2009).

    Article  CAS  Google Scholar 

  7. Nudelman, A.S. et al. Neuronal activity rapidly induces transcription of the CREB-regulated microRNA-132, in vivo. Hippocampus 20, 492–498 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Vo, N. et al. A cAMP-response element binding protein–induced microRNA regulates neuronal morphogenesis. Proc. Natl. Acad. Sci. USA 102, 16426–16431 (2005).

    Article  CAS  Google Scholar 

  9. Mayo, L.D., Kessler, K.M., Pincheira, R., Warren, R.S. & Donner, D.B. Vascular endothelial cell growth factor activates CRE-binding protein by signaling through the KDR receptor tyrosine kinase. J. Biol. Chem. 276, 25184–25189 (2001).

    Article  CAS  Google Scholar 

  10. Tan, Y. et al. FGF and stress regulate CREB and ATF-1 via a pathway involving p38 MAP kinase and MAPKAP kinase-2. EMBO J. 15, 4629–4642 (1996).

    Article  CAS  Google Scholar 

  11. Kenneth, T.E. & Kertes, P.J. Ranibizumab in neovascular age-related macular degeneration. Clin. Interv. Aging 1, 451–466 (2006).

    Article  Google Scholar 

  12. Gragoudas, E.S., Adamis, A.P., Cunningham, E.T. Jr., Feinsod, M. & Guyer, D.R. Pegaptanib for neovascular age-related macular degeneration. N. Engl. J. Med. 351, 2805–2816 (2004).

    Article  CAS  Google Scholar 

  13. Griffiths-Jones, S., Grocock, R.J., van Dongen, S., Bateman, A. & Enright, A.J. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 34, D140–D144 (2006).

    Article  CAS  Google Scholar 

  14. Lewis, B.P., Burge, C.B. & Bartel, D.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20 (2005).

    Article  CAS  Google Scholar 

  15. Krek, A. et al. Combinatorial microRNA target predictions. Nat. Genet. 37, 495–500 (2005).

    Article  CAS  Google Scholar 

  16. Rehmsmeier, M., Steffen, P., Hochsmann, M. & Giegerich, R. Fast and effective prediction of microRNA/target duplexes. RNA 10, 1507–1517 (2004).

    Article  CAS  Google Scholar 

  17. Bartel, D.P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).

    Article  CAS  Google Scholar 

  18. Hoshino, M., Kawakita, M. & Hattori, S. Characterization of a factor that stimulates hydrolysis of GTP bound to ras gene product p21 (GTPase-activating protein) and correlation of its activity to cell density. Mol. Cell. Biol. 8, 4169–4173 (1988).

    Article  CAS  Google Scholar 

  19. McCormick, F. ras GTPase activating protein: signal transmitter and signal terminator. Cell 56, 5–8 (1989).

    Article  CAS  Google Scholar 

  20. Lapinski, P.E. et al. Generation of mice with a conditional allele of the p120 Ras GTPase-activating protein. Genesis 45, 762–767 (2007).

    Article  CAS  Google Scholar 

  21. Henkemeyer, M. et al. Vascular system defects and neuronal apoptosis in mice lacking ras GTPase-activating protein. Nature 377, 695–701 (1995).

    Article  CAS  Google Scholar 

  22. Boon, L.M., Mulliken, J.B. & Vikkula, M. RASA1: variable phenotype with capillary and arteriovenous malformations. Curr. Opin. Genet. Dev. 15, 265–269 (2005).

    Article  CAS  Google Scholar 

  23. Eerola, I. et al. Capillary malformation-arteriovenous malformation, a new clinical and genetic disorder caused by RASA1 mutations. Am. J. Hum. Genet. 73, 1240–1249 (2003).

    Article  CAS  Google Scholar 

  24. Hershkovitz, D., Bercovich, D., Sprecher, E. & Lapidot, M. RASA1 mutations may cause hereditary capillary malformations without arteriovenous malformations. Br. J. Dermatol. 158, 1035–1040 (2008).

    Article  CAS  Google Scholar 

  25. Hood, J.D. et al. Tumor regression by targeted gene delivery to the neovasculature. Science 296, 2404–2407 (2002).

    Article  CAS  Google Scholar 

  26. Fish, J.E. et al. miR-126 regulates angiogenic signaling and vascular integrity. Dev. Cell 15, 272–284 (2008).

    Article  CAS  Google Scholar 

  27. Harris, T.A., Yamakuchi, M., Ferlito, M., Mendell, J.T. & Lowenstein, C.J. MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc. Natl. Acad. Sci. USA 105, 1516–1521 (2008).

    Article  CAS  Google Scholar 

  28. Wang, S. et al. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev. Cell 15, 261–271 (2008).

    Article  Google Scholar 

  29. Würdinger, T. et al. miR-296 regulates growth factor receptor overexpression in angiogenic endothelial cells. Cancer Cell 14, 382–393 (2008).

    Article  Google Scholar 

  30. Bonauer, A. et al. MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science 324, 1710–1713 (2009).

    Article  CAS  Google Scholar 

  31. Komada, M. & Kitamura, N. The Hrs/STAM complex in the downregulation of receptor tyrosine kinases. J. Biochem. 137, 1–8 (2005).

    Article  CAS  Google Scholar 

  32. Kulkarni, S.V., Gish, G., van der Geer, P., Henkemeyer, M. & Pawson, T. Role of p120 Ras-GAP in directed cell movement. J. Cell Biol. 149, 457–470 (2000).

    Article  CAS  Google Scholar 

  33. Meadows, K.N., Bryant, P., Vincent, P.A. & Pumiglia, K.M. Activated Ras induces a proangiogenic phenotype in primary endothelial cells. Oncogene 23, 192–200 (2004).

    Article  CAS  Google Scholar 

  34. Bergers, G. & Hanahan, D. Modes of resistance to anti-angiogenic therapy. Nat. Rev. Cancer 8, 592–603 (2008).

    Article  CAS  Google Scholar 

  35. Munoz, R. et al. Highly efficacious nontoxic preclinical treatment for advanced metastatic breast cancer using combination oral UFT-cyclophosphamide metronomic chemotherapy. Cancer Res. 66, 3386–3391 (2006).

    Article  CAS  Google Scholar 

  36. Koh, W., Stratman, A.N., Sacharidou, A. & Davis, G.E. In vitro three dimensional collagen matrix models of endothelial lumen formation during vasculogenesis and angiogenesis. Methods Enzymol. 443, 83–101 (2008).

    Article  CAS  Google Scholar 

  37. Pena, J.T. et al. miRNA in situ hybridization in formaldehyde and EDC-fixed tissues. Nat. Methods 6, 139–141 (2009).

    Article  CAS  Google Scholar 

  38. Scheppke, L. et al. Retinal vascular permeability suppression by topical application of a novel VEGFR2/Src kinase inhibitor in mice and rabbits. J. Clin. Invest. 118, 2337–2346 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Weis, S., Cui, J., Barnes, L. & Cheresh, D. Endothelial barrier disruption by VEGF-mediated Src activity potentiates tumor cell extravasation and metastasis. J. Cell Biol. 167, 223–229 (2004).

    Article  CAS  Google Scholar 

  40. Desgrosellier, J.S. et al. An integrin αvβ3-c-Src oncogenic unit promotes anchorage-independence and tumor progression. Nat. Med. 15, 1163–1169 (2009).

    Article  CAS  Google Scholar 

Download references


We thank L. Barnes, E. Goka, B. Walsh and D. Wu for technical support. We thank S. Weng and J. Desgrosellier for discussions. We thank E. Brown (University of Pennsylvania) for the Ert2-ubiquitin-Cre mice. We thank R. Kerbel (University of Toronto) for the fast-growing variant of MDA-MB-231 breast carcinoma cells. We thank S. Kajiji (Scripps Research Institute) for FG human pancreatic adenocarcinoma cells. This work was supported by US National Institutes of Health grants HL078912, CA104898 and CA050286 to D.A.C. and HL096498 to P.D.K. S.A. is supported in part by an American Heart Association postdoctoral fellowship 09POST2040038.

Author information

Authors and Affiliations



S.A. and D.A.C. designed the study. E.A.M., B.K.M. and R.M. designed the nanoparticles. J.N.L. established the human ES cell vasculogenesis model. D.J.S. helped with the TaqMan microRNA panel experiments and analysis. P.E.L. and P.D.K. generated and characterized the Rasa1fl/fl mice. S.A., L.S., L.M.A. and M.H. performed experiments and analyzed data. S.A., S.M.W. and D.A.C. analyzed data and wrote the manuscript. D.A.C. supervised the project.

Corresponding author

Correspondence to David A Cheresh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–16 (PDF 3797 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Anand, S., Majeti, B., Acevedo, L. et al. MicroRNA-132–mediated loss of p120RasGAP activates the endothelium to facilitate pathological angiogenesis. Nat Med 16, 909–914 (2010).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer