Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Missing pieces in the Parkinson's disease puzzle

Abstract

Parkinson's disease is a neurodegenerative process characterized by numerous motor and nonmotor clinical manifestations for which effective, mechanism-based treatments remain elusive. Here we discuss a series of critical issues that we think researchers need to address to stand a better chance of solving the different challenges posed by this pathology.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Schematic summary of established etiopathogenic mechanisms and interactions in the dopaminergic cells of the substantia nigra in Parkinson's disease.
Figure 2: Striatal dopamine innervation assessed by 18F-dopa positron emission tomography.
Figure 3: Distribution of Lewy bodies in Parkinson's disease.

References

  1. Lang, A.E. & Obeso, J.A. Challenges in Parkinson's disease: restoration of the nigrostriatal dopamine system is not enough. Lancet Neurol. 3, 309–316 (2004).

    PubMed  Article  Google Scholar 

  2. Schapira, A.H. Neurobiology and treatment of Parkinson's disease. Trends Pharmacol. Sci. 30, 41–47 (2009).

    CAS  PubMed  Article  Google Scholar 

  3. Chan, C.S., Gertler, T.S. & Surmeier, D.J. Calcium homeostasis, selective vulnerability and Parkinson's disease. Trends Neurosci. 32, 249–256 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. Gupta, A., Dawson, V.L. & Dawson, T.M. What causes cell death in Parkinson's disease? Ann. Neurol. 64 Suppl 2, S3–S15 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Litvan, I. et al. The etiopathogenesis of Parkinson disease and suggestions for future research. Part I. J. Neuropathol. Exp. Neurol. 66, 251–257 (2007).

    CAS  PubMed  Article  Google Scholar 

  6. Litvan, I. et al. The etiopathogenesis of Parkinson disease and suggestions for future research. Part II. J. Neuropathol. Exp. Neurol. 66, 329–336 (2007).

    CAS  PubMed  Article  Google Scholar 

  7. Langston, J.W. The Parkinson's complex: parkinsonism is just the tip of the iceberg. Ann. Neurol. 59, 591–596 (2006).

    PubMed  Article  Google Scholar 

  8. Selikhova, M. et al. A clinico-pathological study of subtypes in Parkinson's disease. Brain 132, 2947–2957 (2009).

    CAS  PubMed  Article  Google Scholar 

  9. Hawkes, C.H. The prodromal phase of sporadic Parkinson's disease: does it exist and if so how long is it? Mov. Disord. 23, 1799–1807 (2008).

    PubMed  Article  Google Scholar 

  10. O'Sullivan, S.S. et al. Nonmotor symptoms as presenting complaints in Parkinson's disease: a clinicopathological study. Mov. Disord. 23, 101–106 (2008).

    PubMed  Article  Google Scholar 

  11. Schrag, A. et al. Rate of clinical progression in Parkinson's disease. A prospective study. Mov. Disord. 22, 938–945 (2007).

    PubMed  Article  Google Scholar 

  12. Post, B., Merkus, M.P., de Haan, R.J. & Speelman, J.D. Prognostic factors for the progression of Parkinson's disease: a systematic review. Mov. Disord. 22, 1839–1851 (2007).

    PubMed  Article  Google Scholar 

  13. Aarsland, D., Beyer, M.K. & Kurz, M.W. Dementia in Parkinson's disease. Curr. Opin. Neurol. 21, 676–682 (2008).

    PubMed  Article  Google Scholar 

  14. Aarsland, D., Zaccai, J. & Brayne, C. A systematic review of prevalence studies of dementia in Parkinson's disease. Mov. Disord. 20, 1255–1263 (2005).

    PubMed  Article  Google Scholar 

  15. Hely, M.A., Reid, W.G., Adena, M.A., Halliday, G.M. & Morris, J.G. The Sydney multicenter study of Parkinson's disease: the inevitability of dementia at 20 years. Mov. Disord. 23, 837–844 (2008).

    PubMed  Article  Google Scholar 

  16. Sato, K. et al. Prognosis of Parkinson's disease: time to stage III, IV, V, and to motor fluctuations. Mov. Disord. 21, 1384–1395 (2006).

    PubMed  Article  Google Scholar 

  17. Beauchamp, M.H., Dagher, A., Panisset, M. & Doyon, J. Neural substrates of cognitive skill learning in Parkinson's disease. Brain Cogn. 68, 134–143 (2008).

    CAS  PubMed  Article  Google Scholar 

  18. Huang, C. et al. Changes in network activity with the progression of Parkinson's disease. Brain 130, 1834–1846 (2007).

    PubMed  Article  Google Scholar 

  19. Sulzer, D. Multiple hit hypotheses for dopamine neuron loss in Parkinson's disease. Trends Neurosci. 30, 244–250 (2007).

    CAS  PubMed  Article  Google Scholar 

  20. Perier, C. et al. Two molecular pathways initiate mitochondria-dependent dopaminergic neurodegeneration in experimental Parkinson's disease. Proc. Natl. Acad. Sci. USA 104, 8161–8166 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Powers, K.M. et al. Combined effects of smoking, coffee, and NSAIDs on Parkinson's disease risk. Mov. Disord. 23, 88–95 (2008).

    PubMed  Article  Google Scholar 

  22. Inzelberg, R. & Jankovic, J. Are Parkinson disease patients protected from some but not all cancers? Neurology 69, 1542–1550 (2007).

    PubMed  Article  Google Scholar 

  23. Gao, X. et al. Genetic determinants of hair color and Parkinson's disease risk. Ann. Neurol. 65, 76–82 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  24. Schiesling, C., Kieper, N., Seidel, K. & Krüger, R. Review: Familial Parkinson's disease-genetics, clinical phenotype and neuropathology in relation to the common sporadic form of the disease. Neuropathol. Appl. Neurobiol. 34, 255–271 (2008).

    CAS  PubMed  Article  Google Scholar 

  25. Farrer, M.J. Genetics of Parkinson disease: paradigm shifts and future prospects. Nat. Rev. Genet. 7, 306–318 (2006).

    CAS  PubMed  Article  Google Scholar 

  26. Polymeropoulos, M.H. et al. Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science 276, 2045–2047 (1997).

    CAS  Article  PubMed  Google Scholar 

  27. Singleton, A.B. et al. Alpha-Synuclein locus triplication causes Parkinson's disease. Science 302, 841 (2003).

    CAS  PubMed  Article  Google Scholar 

  28. Ross, O.A. et al. Genomic investigation of alpha-synuclein multiplication and parkinsonism. Ann. Neurol. 63, 743–750 (2008).

    CAS  PubMed  Article  Google Scholar 

  29. Farrer, M. et al. Comparison of kindreds with parkinsonism and alpha-synuclein genomic multiplications. Ann. Neurol. 55, 174–179 (2004).

    CAS  PubMed  Article  Google Scholar 

  30. Cookson, M.R. Alpha-Synuclein and neuronal cell death. Mol. Neurodegener. 4, 9 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  31. Cuervo, A.M., Stefanis, L., Fredenburg, R., Lansbury, P.T. & Sulzer, D. Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science 305, 1292–1295 (2004).

    CAS  Article  PubMed  Google Scholar 

  32. Lewis, J. et al. In vivo silencing of alpha-synuclein using naked siRNA. Mol. Neurodegener. 3, 19 (2008).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  33. Paisán-Ruiz, C. et al. Cloning of the gene containing mutations that cause PARK8-linked Parkinson's disease. Neuron 44, 595–600 (2004).

    PubMed  Article  Google Scholar 

  34. Zimprich, A. et al. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 44, 601–607 (2004).

    CAS  PubMed  Article  Google Scholar 

  35. Healy, D.G. et al. Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson's disease: a case-control study. Lancet Neurol. 7, 583–590 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. Smith, W.W. et al. Leucine-rich repeat kinase 2 (LRRK2) interacts with parkin, and mutant LRRK2 induces neuronal degeneration. Proc. Natl. Acad. Sci. USA 102, 18676–18681 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. Ramírez-Valle, F., Braunstein, S., Zavadil, J., Formenti, S.C. & Schneider, R.J. eIF4GI links nutrient sensing by mTOR to cell proliferation and inhibition of autophagy. J. Cell Biol. 181, 293–307 (2008).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  38. Sidransky, E. et al. Multicenter analysis of glucocerebrosidase mutations in Parkinson's disease. N. Engl. J. Med. 361, 1651–1661 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. Neumann, J. et al. Glucocerebrosidase mutations in clinical and pathologically proven Parkinson's disease. Brain 132, 1783–1794 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  40. Mitsui, J. et al. Mutations for Gaucher disease confer high susceptibility to Parkinson disease. Arch. Neurol. 66, 571–576 (2009).

    PubMed  Article  Google Scholar 

  41. DePaolo, J., Goker-Alpan, O., Samaddar, T., Lopez, G. & Sidransky, E. The association between mutations in the lysosomal protein glucocerebrosidase and parkinsonism. Mov. Disord. 24, 1571–1578 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  42. Ishikawa, S. et al. Oxidative status of DJ-1-dependent activation of dopamine synthesis through interaction of tyrosine hydroxylase and L-DOPA decarboxylase with DJ-1. J. Biol. Chem. 284, 28832–28844 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. Lutz, A.K. et al. Loss of parkin or PINK1 function increases Drp1-dependent mitochondrial fragmentation. J. Biol. Chem. 284, 22938–22951 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. Narendra, D., Tanaka, A., Suen, D.F. & Youle, R.J. Parkin-induced mitophagy in the pathogenesis of Parkinson disease. Autophagy 5, 706–708 (2009).

    CAS  PubMed  Article  Google Scholar 

  45. Kitada, T., Tong, Y., Gautier, C.A. & Shen, J. Absence of nigral degeneration in aged parkin/DJ-1/PINK1 triple knockout mice. J. Neurochem. 111, 696–702 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. Brooks, J. et al. Parkin and PINK1 mutations in early-onset Parkinson's disease: comprehensive screening in publicly available cases and control. J. Med. Genet. 46, 375–381 (2009).

    CAS  PubMed  Article  Google Scholar 

  47. Hardy, J., Lewis, P., Revesz, T., Lees, A. & Paisan-Ruiz, C. The genetics of Parkinson's syndromes: a critical review. Curr. Opin. Genet. Dev. 19, 254–265 (2009).

    CAS  PubMed  Article  Google Scholar 

  48. Satake, W. et al. Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson's disease. Nat. Genet. 41, 1303–1307 (2009).

    CAS  PubMed  Article  Google Scholar 

  49. Simón-Sánchez, J. et al. Genome-wide association study reveals genetic risk underlying Parkinson's disease. Nat. Genet. 41, 1308–1312 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  50. Edwards, T.L. et al. Genome-wide association study confirms SNPs in SNCA and the MAPT region as common risk factors for Parkinson disease. Ann. Hum. Genet. 74, 97–109 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. Lees, A.J., Hardy, J. & Revesz, T. Parkinson's disease. Lancet 373, 2055–2066 (2009).

    CAS  Article  PubMed  Google Scholar 

  52. Yang, Y.X., Wood, N.W. & Latchman, D.S. Molecular basis of Parkinson's disease. Neuroreport 20, 150–156 (2009).

    CAS  PubMed  Article  Google Scholar 

  53. Naoi, M. et al. Glutathione redox status in mitochondria and cytoplasm differentially and sequentially activates apoptosis cascade in dopamine-melanin-treated SH-SY5Y cells. Neurosci. Lett. 465, 118–122 (2009).

    CAS  PubMed  Article  Google Scholar 

  54. Gluck, M., Ehrhart, J., Jayatilleke, E. & Zeevalk, G.D. Inhibition of brain mitochondrial respiration by dopamine: involvement of H2O2 and hydroxyl radicals but not glutathione-protein-mixed disulfides. J. Neurochem. 82, 66–74 (2002).

    CAS  PubMed  Article  Google Scholar 

  55. González-Hernandez, T. et al. Expression of dopamine and vesicular monoamine transporters and differential vulnerability of mesostriatal dopaminergic neurons. J. Comp. Neurol. 479, 198–215 (2004).

    PubMed  Article  CAS  Google Scholar 

  56. Damier, P., Hirsch, E.C., Agid, Y. & Graybiel, A.M. The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson's disease. Brain 122, 1437–1448 (1999).

    PubMed  Article  Google Scholar 

  57. Gibb, W.R., Fearnley, J.M. & Lees, A.J. The anatomy and pigmentation of the human substantia nigra in relation to selective neuronal vulnerability. Adv. Neurol. 53, 31–34 (1990).

    CAS  PubMed  Google Scholar 

  58. Esteves, A.R., Arduíno, D.M., Swerdlow, R.H., Oliveira, C.R. & Cardoso, S.M. Dysfunctional mitochondria uphold calpain activation: contribution to Parkinson's disease pathology. Neurobiol. Dis. 37, 723–730 (2009).

    PubMed  Article  CAS  Google Scholar 

  59. Chan, C.S. et al. 'Rejuvenation' protects neurons in mouse models of Parkinson's disease. Nature 447, 1081–1086 (2007).

    CAS  PubMed  Article  Google Scholar 

  60. Alavian, K.N., Scholz, C. & Simon, H.H. Transcriptional regulation of mesencephalic dopaminergic neurons: the full circle of life and death. Mov. Disord. 23, 319–328 (2008).

    PubMed  Article  Google Scholar 

  61. Mosharov, E.V. et al. Interplay between cytosolic dopamine, calcium, and alpha-synuclein causes selective death of substantia nigra neurons. Neuron 62, 218–229 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. Moss, J. & Bolam, J.P. A dopaminergic axon lattice in the striatum and its relationship with cortical and thalamic terminals. J. Neurosci. 28, 11221–11230 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  63. MacDonald, V. & Halliday, G.M. Selective loss of pyramidal neurons in the pre-supplementary motor cortex in Parkinson's disease. Mov. Disord. 17, 1166–1173 (2002).

    PubMed  Article  Google Scholar 

  64. Gibb, W.R. & Lees, A.J. A comparison of clinical and pathological features of young- and old-onset Parkinson's disease. Neurology 38, 1402–1406 (1988).

    CAS  PubMed  Article  Google Scholar 

  65. Greffard, S. et al. Motor score of the Unified Parkinson Disease Rating Scale as a good predictor of Lewy body-associated neuronal loss in the substantia nigra. Arch. Neurol. 63, 584–588 (2006).

    PubMed  Article  Google Scholar 

  66. Nandhagopal, R. et al. Longitudinal progression of sporadic Parkinson's disease: a multi-tracer positron emission tomography study. Brain 132, 2970–2979 (2009).

    CAS  PubMed  Article  Google Scholar 

  67. Brück, A. et al. Striatal subregional 18-F-fluoro-L-dopa uptake in early Parkinson's disease: a two-year follow-up study. Mov. Disord. 21, 958–963 (2006).

    PubMed  Article  Google Scholar 

  68. Hawkes, C.H. Parkinson's disease and aging: same or different process? Mov. Disord. 23, 47–53 (2008).

    PubMed  Article  Google Scholar 

  69. Zarow, C., Lyness, S.A., Mortimer, J.A. & Chui, H.C. Neuronal loss is greater in the locus coeruleus than nucleus basalis and substantia nigra in Alzheimer and Parkinson diseases. Arch. Neurol. 60, 337–341 (2003).

    PubMed  Article  Google Scholar 

  70. Hilker, R. et al. Dementia in Parkinson disease: functional imaging of cholinergic and dopaminergic pathways. Neurology 65, 1716–1722 (2005).

    CAS  PubMed  Article  Google Scholar 

  71. Rinne, J.O., Ma, S.Y., Lee, M.S., Collan, Y. & Röyttä, M. Loss of cholinergic neurons in the pedunculopontine nucleus in Parkinson's disease is related to disability of the patients. Parkinsonism Relat. Disord. 14, 553–557 (2008).

    PubMed  Article  Google Scholar 

  72. Thannickal, T.C., Lai, Y.Y. & Siegel, J.M. Hypocretin (orexin) cell loss in Parkinson's disease. Brain 130, 1586–1595 (2007).

    PubMed  Article  Google Scholar 

  73. Braak, H. et al. Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol. Aging 24, 197–211 (2003).

    PubMed  Article  Google Scholar 

  74. Braak, H., Rüb, U. & Del Tredici, K. Cognitive decline correlates with neuropathological stage in Parkinson's disease. J. Neurol. Sci. 248, 255–258 (2006).

    PubMed  Article  Google Scholar 

  75. Braak, H., Rüb, U., Jansen Steur, E.N., Del Tredici, K. & de Vos, R.A. Cognitive status correlates with neuropathologic stage in Parkinson disease. Neurology 64, 1404–1410 (2005).

    CAS  PubMed  Article  Google Scholar 

  76. Aarsland, D., Perry, R., Brown, A., Larsen, J.P. & Ballard, C. Neuropathology of dementia in Parkinson's disease: a prospective, community-based study. Ann. Neurol. 58, 773–776 (2005).

    PubMed  Article  Google Scholar 

  77. Harding, A.J., Broe, G.A. & Halliday, G.M. Visual hallucinations in Lewy body disease relate to Lewy bodies in the temporal lobe. Brain 125, 391–403 (2002).

    CAS  PubMed  Article  Google Scholar 

  78. Yamamoto, R. et al. Correlation in Lewy pathology between the claustrum and visual areas in brains of dementia with Lewy bodies. Neurosci. Lett. 415, 219–224 (2007).

    CAS  PubMed  Article  Google Scholar 

  79. Gómez-Tortosa, E. et al. Clinical and quantitative pathologic correlates of dementia with Lewy bodies. Neurology 53, 1284–1291 (1999).

    PubMed  Article  Google Scholar 

  80. Shepherd, C.E. et al. Neurofilament-immunoreactive neurons in Alzheimer's disease and dementia with Lewy bodies. Neurobiol. Dis. 9, 249–257 (2002).

    PubMed  Article  Google Scholar 

  81. Kempster, P.A. et al. Patterns of levodopa response in Parkinson's disease: a clinico-pathological study. Brain 130, 2123–2128 (2007).

    CAS  PubMed  Article  Google Scholar 

  82. Halliday, G., Hely, M., Reid, W. & Morris, J. The progression of pathology in longitudinally followed patients with Parkinson's disease. Acta Neuropathol. 115, 409–415 (2008).

    PubMed  Article  Google Scholar 

  83. Burke, R.E., Dauer, W.T. & Vonsattel, J.P. A critical evaluation of the Braak staging scheme for Parkinson's disease. Ann. Neurol. 64, 485–491 (2008).

    PubMed  PubMed Central  Article  Google Scholar 

  84. Li, J.Y. et al. Lewy bodies in grafted neurons in subjects with Parkinson's disease suggest host-to-graft disease propagation. Nat. Med. 14, 501–503 (2008).

    CAS  PubMed  Article  Google Scholar 

  85. Kordower, J.H., Chu, Y., Hauser, R.A., Freeman, T.B. & Olanow, C.W. Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson's disease. Nat. Med. 14, 504–506 (2008).

    CAS  Article  PubMed  Google Scholar 

  86. Kordower, J.H., Chu, Y., Hauser, R.A., Olanow, C.W. & Freeman, T.B. Transplanted dopaminergic neurons develop Parkinson's disease pathologic changes: a second case report. Mov. Disord. 23, 2303–2306 (2008).

    PubMed  Article  Google Scholar 

  87. Mendez, I. et al. Dopamine neurons implanted into people with Parkinson's disease survive without pathology for 14 years. Nat. Med. 14, 507–509 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  88. Kordower, J.H. et al. Neuropathological evidence of graft survival and striatal reinnervation after the transplantation of fetal mesencephalic tissue in a patient with Parkinson's disease. N. Engl. J. Med. 332, 1118–1124 (1995).

    CAS  PubMed  Article  Google Scholar 

  89. Kordower, J.H. et al. Fetal nigral grafts survive and mediate clinical benefit in a patient with Parkinson's disease. Mov. Disord. 13, 383–393 (1998).

    CAS  Article  PubMed  Google Scholar 

  90. Olanow, C.W. & Prusiner, S.B. Is Parkinson's disease a prion disorder? Proc. Natl. Acad. Sci. USA 106, 12571–12572 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  91. Lee, H.J., Patel., S. & Lee, S.J. Intravesicular localization and exocytosis of alpha-synuclein and its aggregates. J. Neurosci. 25, 6016–6024 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  92. Desplats, P. et al. Inclusion formation and neuronal cell death through neuron-to-neuron transmission of α-synuclein. Proc. Natl. Acad. Sci. USA 106, 13010–13015 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  93. Brundin, P., Li, J.Y., Holton, J.L., Lindvall, O. & Revesz, T. Research in motion: the enigma of Parkinson's disease pathology spread. Nat. Rev. Neurosci. 9, 741–745 (2008).

    CAS  PubMed  Article  Google Scholar 

  94. Frost, B. & Diamond, M.I. Prion-like mechanisms in neurodegenerative diseases. Nat. Rev. Neurosci. (2010).

  95. Vila, M., Ramonet, D. & Perier, C. Mitochondrial alterations in Parkinson's disease: new clues. J. Neurochem. 107, 317–328 (2008).

    CAS  PubMed  Article  Google Scholar 

  96. Brar, S., Henderson, D., Schenck, J. & Zimmerman, E.A. Iron accumulation in the substantia nigra of patients with Alzheimer disease and parkinsonism. Arch. Neurol. 66, 371–374 (2009).

    PubMed  Article  Google Scholar 

  97. Pan, T., Kondo, S., Le, W. & Jankovic, J. The role of autophagy-lysosome pathway in neurodegeneration associated with Parkinson's disease. Brain 131, 1969–1978 (2008).

    PubMed  Article  Google Scholar 

  98. Olanow, C.W. et al. A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson's disease. Ann. Neurol. 54, 403–414 (2003).

    PubMed  Article  Google Scholar 

  99. Freed, C.R. et al. Transplantation of embryonic dopamine neurons for severe Parkinson's disease. N. Engl. J. Med. 344, 710–719 (2001).

    CAS  PubMed  Article  Google Scholar 

  100. Goetz, C.G. et al. Placebo response in Parkinson's disease: comparisons among 11 trials covering medical and surgical interventions. Mov. Disord. 23, 690–699 (2008).

    PubMed  Article  Google Scholar 

  101. Olanow, C.W., Kordower, J.H., Lang, A.E. & Obeso, J.A. Dopaminergic transplantation for Parkinson's disease: current status and future prospects. Ann. Neurol. 66, 591–596 (2009).

    CAS  PubMed  Article  Google Scholar 

  102. Bjorklund, L.M. et al. Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc. Natl. Acad. Sci. USA 99, 2344–2349 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  103. Cai, J. et al. Dopaminergic neurons derived from human induced pluripotent stem cells survive and integrate into 6-OHDA lesioned rats. Stem Cells Dev. published online, doi:10.1089/SCD.2009-0319 (13 October 2009).

  104. Redmond, D.E. et al. Behavioral improvement in a primate Parkinson's model is associated with multiple homeostatic effects of human neural stem cells. Proc. Natl. Acad. Sci. USA 104, 12175–12180 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  105. Kiskinis, E. & Eggan, K. Progress toward the clinical application of patient-specific pluripotent stem cells. J. Clin. Invest. 120, 51–59 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  106. Soldner, F. et al. Parkinson's disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 136, 964–977 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  107. Eberling, J.L. et al. Results from a phase I safety trial of hAADC gene therapy for Parkinson disease. Neurology 70, 1980–1983 (2008).

    CAS  PubMed  Article  Google Scholar 

  108. Kaplitt, M.G. et al. Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson's disease: an open label, phase I trial. Lancet 369, 2097–2105 (2007).

    CAS  Article  PubMed  Google Scholar 

  109. Palfi, S. Towards gene therapy for Parkinson's disease. Lancet Neurol. 7, 375–376 (2008).

    PubMed  Article  Google Scholar 

  110. Gasmi, M. et al. AAV2-mediated delivery of human neurturin to the rat nigrostriatal system: long-term efficacy and tolerability of CERE-120 for Parkinson's disease. Neurobiol. Dis. 27, 67–76 (2007).

    CAS  PubMed  Article  Google Scholar 

  111. Kordower, J.H. et al. Delivery of neurturin by AAV2 (CERE-120)-mediated gene transfer provides structural and functional neuroprotection and neurorestoration in MPTP-treated monkeys. Ann. Neurol. 60, 706–715 (2006).

    CAS  PubMed  Article  Google Scholar 

  112. Marks, W.J. Jr. et al. Safety and tolerability of intraputaminal delivery of CERE-120 (adeno-associated virus serotype 2-neurturin) to patients with idiopathic Parkinson's disease: an open-label, phase I trial. Lancet Neurol. 7, 400–408 (2008).

    Article  PubMed  Google Scholar 

  113. Schapira, A.H. Neurobiology and treatment of Parkinson's disease. Trends Pharmacol. Sci. 30, 41–47 (2009).

    CAS  PubMed  Article  Google Scholar 

  114. LeWitt, P.A. & Taylor, D.C. Protection against Parkinson's disease progression: clinical experience. Neurotherapeutics 5, 210–225 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  115. Hung, A.Y. & Schwarzschild, M.A. Clinical trials for neuroprotection in Parkinson's disease: overcoming angst and futility? Curr. Opin. Neurol. 20, 477–483 (2007).

    CAS  PubMed  Article  Google Scholar 

  116. Olanow, C.W., Kieburtz, K. & Schapira, A.H. Why have we failed to achieve neuroprotection in Parkinson's disease? Ann. Neurol. 64 (Suppl. 2), S101–S110 (2008).

    CAS  PubMed  Google Scholar 

  117. Whone, A.L. et al. Slower progression of Parkinson's disease with ropinirole versus levodopa: The REAL-PET study. Ann. Neurol. 54, 93–101 (2003).

    CAS  PubMed  Article  Google Scholar 

  118. Holloway, R.G. et al. Pramipexole vs levodopa as initial treatment for Parkinson disease: a 4-year randomized controlled trial. Arch. Neurol. 61, 1044–1053 (2004).

    PubMed  Google Scholar 

  119. Storch, A. et al. Randomized, double-blind, placebo-controlled trial on symptomatic effects of coenzyme Q(10) in Parkinson disease. Arch. Neurol. 64, 938–944 (2007).

    PubMed  Article  Google Scholar 

  120. Shoulson, I. et al. Impact of sustained deprenyl (selegiline) in levodopa-treated Parkinson's disease: a randomized placebo-controlled extension of the deprenyl and tocopherol antioxidative therapy of parkinsonism trial. Ann. Neurol. 51, 604–612 (2002).

    CAS  PubMed  Article  Google Scholar 

  121. Hart, R.G., Pearce, L.A., Ravina, B.M., Yaltho, T.C. & Marler, J.R. Neuroprotection trials in Parkinson's disease: systematic review. Mov. Disord. 24, 647–654 (2009).

    PubMed  Article  Google Scholar 

  122. Olanow, C.W. et al. A double-blind, delayed-start trial of rasagiline in Parkinson's disease. N. Engl. J. Med. 361, 1268–1278 (2009).

    CAS  Article  PubMed  Google Scholar 

  123. Anonymous. Drugs may put brakes on Parkinson's disease. Nat. Med. 15, 1250 (2009).

  124. Marras, C. & Tanner, C.M. Epidemiology of Parkinson's disease. in Movement Disorders: Neurologic Principles and Practice (eds. Watts, R., Obeso, J.A. & Stendert, D.) 102–111 (McGraw-Hill Medical Publishing, Columbus, Ohio, USA, 2010).

  125. Moss, J. & Bolam, J.P. The relationship between dopaminergic axons and glutamatergic synapses in the striatum: structural considerations. in Dopamine Handbook (Iversen, L.L., Iversen, S.D., Dunnett, S.B. & Björklund A.) 49–59 (Oxford University Press, Oxford, UK, 2010).

  126. Gao, X. et al. Diet, urate, and Parkinson's disease risk in men. Am. J. Epidemiol. 167, 831–838 (2008).

    PubMed  Article  Google Scholar 

  127. Thacker, E.L., Chen, H. & Patel, A. al. E. Recreational physical activity and risk of Parkinson's disease. Mov. Disord. 23, 69–74 (2008).

    PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

This article is the result of a meeting held by the authors in the village of Marcalain (Navarra, Spain) with the support of an unrestricted educational grant from Lundbeck Spain. R. Coll, J. Brenninkmeijer and M. Hickery (Lundbeck) assisted on logistical aspects of the meeting, but the company had no role whatsoever in the content of the meeting and the scope of this article. We are particularly thankful to the Idoate family for their hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose A Obeso.

Ethics declarations

Competing interests

J.A.O. has served on the Advisory Board of GlaxoSmithKline (UK) and received honoraria for lecturing at meetings organized by GlaxoSmithKline (Spain), Lundbeck-Teva and UCB. M.C.R.-O. participates in the Advisory Board of UCB Spain and receives payment for lectures and travel accommodation payments for scientific meetings from GlaxoSmithKline, UCB, Lundbeck and Medtronic and for teaching courses from Medtronic. C.G.G., as of the 12 months ending September 2009, is a consultant to or member of Advisory Boards, with associated honoraria, for Asubio, Boehringer-Ingelheim, Impax Pharmaceuticals, i3 Research, Ingenix, Juvantia Pharmaceuticals, Neurim Pharmaceuticals, Novartis Pharmaceuticals, Osmotica Pharmaceutical, Oxford Biomedica, Santhera Pharmaceuticals, Solvay Pharmaceuticals, Teva Pharmaceuticals, United Biosource Corporation and UCB. J.K. is a founding scientist and Scientific Advisory Board member of Ceregene Inc. A.S. has received honoraria from Lundbeck-Teva, Boehringer-Ingelheim, GlaxoSmithKline and Orion-Novartis for advice on Parkinson's disease drug research and development and for educational symposia. E.H., G.H., M.R. and C.M. report no conflicts of interest.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Obeso, J., Rodriguez-Oroz, M., Goetz, C. et al. Missing pieces in the Parkinson's disease puzzle. Nat Med 16, 653–661 (2010). https://doi.org/10.1038/nm.2165

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2165

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing