Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Disruption of antigenic variation is crucial for effective parasite vaccine

Abstract

Giardia lamblia is a human intestinal pathogen. Like many protozoan microorganisms, Giardia undergoes antigenic variation, a mechanism assumed to allow parasites to evade the host's immune response, producing chronic and/or recurrent infections. Recently, we found that the mechanism controlling variant-specific surface protein (VSP) switching in Giardia involves components of the RNA interference machinery and that disruption of this pathway generates trophozoites simultaneously expressing many VSPs. Here we use these altered trophozoites to determine the role of antigenic variation in a gerbil model of giardiasis. Our results show that either primary infection with trophozoites simultaneously expressing many VSPs or immunization with purified VSPs from the transgenic cells protects gerbils from subsequent Giardia infections. These results constitute, to our knowledge, the first experimental evidence that antigenic variation is essential for parasite survival within hosts and that artificial disruption of this mechanism might be useful in generating vaccines against major pathogens that show similar behavior.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of VSPs in wild-type G. lamblia clones and in G. lamblia with deregulated antigenic variation.
Figure 2: Detection and quantification of Giardia cysts in stool samples of gerbils infected with various populations of wild-type and transgenic trophozoites and challenged with WB9B10 and WB1267.
Figure 3: Serum and intestinal contents of gerbils infected with transgenic trophozoites expressing the full repertoire of VSPs are able to agglutinate different Giardia clones in vitro.
Figure 4: Detection and quantification of Giardia cysts in stool samples of gerbils previously immunized with VSPs purified from various clonal populations of wild-type and transgenic trophozoites.
Figure 5: Intestinal morphology of the gerbil's upper small intestine during infection and challenge.
Figure 6: VSP-specific antibodies react to heterologous isolates.

References

  1. Barrett, L.G., Thrall, P.H., Burdon, J.J. & Linde, C.C. Life history determines genetic structure and evolutionary potential of host-parasite interactions. Trends Ecol. Evol. 23, 678–685 (2008).

    Article  Google Scholar 

  2. Vonlaufen, N., Kanzok, S.M., Wek, R.C. & Sullivan, W.J. Jr. Stress response pathways in protozoan parasites. Cell. Microbiol. 10, 2387–2399 (2008).

    Article  CAS  Google Scholar 

  3. Zambrano-Villa, S., Rosales-Borjas, D., Carrero, J.C. & Ortiz-Ortiz, L. How protozoan parasites evade the immune response. Trends Parasitol. 18, 272–278 (2002).

    Article  CAS  Google Scholar 

  4. Deitsch, K.W., Lukehart, S.A. & Stringer, J.R. Common strategies for antigenic variation by bacterial, fungal and protozoan pathogens. Nat. Rev. Microbiol. 7, 493–503 (2009).

    Article  CAS  Google Scholar 

  5. Adam, R.D. Biology of Giardia lamblia. Clin. Microbiol. Rev. 14, 447–475 (2001).

    Article  CAS  Google Scholar 

  6. Savioli, L., Smith, H. & Thompson, A. Giardia and Cryptosporidium join the 'Neglected Diseases Initiative'. Trends Parasitol. 22, 203–208 (2006).

    Article  CAS  Google Scholar 

  7. Monis, P.T., Caccio, S.M. & Thompson, R.C. Variation in Giardia: towards a taxonomic revision of the genus. Trends Parasitol. 25, 93–100 (2009).

    Article  Google Scholar 

  8. Thompson, R.C., Hopkins, R.M. & Homan, W.L. Nomenclature and genetic groupings of Giardia infecting mammals. Parasitol. Today 16, 210–213 (2000).

    Article  CAS  Google Scholar 

  9. Luján, H.D., Mowatt, M.R. & Nash, T.E. Mechanisms of Giardia lamblia differentiation into cysts. Microbiol. Mol. Biol. Rev. 61, 294–304 (1997).

    PubMed  PubMed Central  Google Scholar 

  10. Buret, A.G. Pathophysiology of enteric infections with Giardia duodenalis. Parasite 15, 261–265 (2008).

    Article  CAS  Google Scholar 

  11. Nash, T.E. Antigenic variation in Giardia lamblia and the host's immune response. Phil. Trans. R. Soc. Lond. B 352, 1369–1375 (1997).

    Article  CAS  Google Scholar 

  12. Nash, T. Surface antigen variability and variation in Giardia lamblia. Parasitol. Today 8, 229–234 (1992).

    Article  CAS  Google Scholar 

  13. Pimenta, P.F., da Silva, P.P. & Nash, T. Variant surface antigens of Giardia lamblia are associated with the presence of a thick cell coat: thin section and label fracture immunocytochemistry survey. Infect. Immun. 59, 3989–3996 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Morrison, H.G. et al. Genomic minimalism in the early diverging intestinal parasite Giardia lamblia. Science 317, 1921–1926 (2007).

    Article  CAS  Google Scholar 

  15. Nash, T.E. Surface antigenic variation in Giardia lamblia. Mol. Microbiol. 45, 585–590 (2002).

    Article  CAS  Google Scholar 

  16. Prucca, C.G. et al. Antigenic variation in Giardia lamblia is regulated by RNA interference. Nature 456, 750–754 (2008).

    Article  CAS  Google Scholar 

  17. Gottstein, B. & Nash, T.E. Antigenic variation in Giardia lamblia: infection of congenitally athymic nude and scid mice. Parasite Immunol. 13, 649–659 (1991).

    Article  CAS  Google Scholar 

  18. Nash, T.E. & Aggarwal, A. Cytotoxicity of monoclonal antibodies to a subset of Giardia isolates. J. Immunol. 136, 2628–2632 (1986).

    CAS  PubMed  Google Scholar 

  19. Hemphill, A., Stager, S., Gottstein, B. & Muller, N. Electron microscopical investigation of surface alterations on Giardia lamblia trophozoites after exposure to a cytotoxic monoclonal antibody. Parasitol. Res. 82, 206–210 (1996).

    Article  CAS  Google Scholar 

  20. Deselliers, L.P., Tan, D.T., Scott, R.B. & Olson, M.E. Effects of Giardia lamblia infection on gastrointestinal transit and contractility in Mongolian gerbils. Dig. Dis. Sci. 42, 2411–2419 (1997).

    Article  CAS  Google Scholar 

  21. Buret, A., Hardin, J.A., Olson, M.E. & Gall, D.G. Pathophysiology of small intestinal malabsorption in gerbils infected with Giardia lamblia. Gastroenterology 103, 506–513 (1992).

    Article  CAS  Google Scholar 

  22. Aggarwal, A. & Nash, T.E. Comparison of two antigenically distinct Giardia lamblia isolates in gerbils. Am. J. Trop. Med. Hyg. 36, 325–332 (1987).

    Article  CAS  Google Scholar 

  23. Moss, D.M., Mathews, H.M., Visvesvara, G.S., Dickerson, J.W. & Walker, E.M. Antigenic variation of Giardia lamblia in the feces of Mongolian gerbils. J. Clin. Microbiol. 28, 254–257 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Luján, H.D., Mowatt, M.R., Conrad, J.T., Bowers, B. & Nash, T.E. Identification of a novel Giardia lamblia cyst wall protein with leucine-rich repeats. Implications for secretory granule formation and protein assembly into the cyst wall. J. Biol. Chem. 270, 29307–29313 (1995).

    Article  Google Scholar 

  25. Nash, T.E., Herrington, D.A., Losonsky, G.A. & Levine, M.M. Experimental human infections with Giardia lamblia. J. Infect. Dis. 156, 974–984 (1987).

    Article  CAS  Google Scholar 

  26. Mowatt, M.R., Aggarwal, A. & Nash, T.E. Carboxy-terminal sequence conservation among variant-specific surface proteins of Giardia lamblia. Mol. Biochem. Parasitol. 49, 215–227 (1991).

    Article  CAS  Google Scholar 

  27. Luján, H.D., Mowatt, M.R., Conrad, J.T. & Nash, T.E. Increased expression of the molecular chaperone BiP/GRP78 during the differentiation of a primitive eukaryote. Biol. Cell 86, 11–18 (1996).

    PubMed  Google Scholar 

  28. Gardner, T.B. & Hill, D.R. Treatment of giardiasis. Clin. Microbiol. Rev. 14, 114–128 (2001).

    Article  CAS  Google Scholar 

  29. Upcroft, J.A., Upcroft, P. & Boreham, P.F. Drug resistance in Giardia intestinalis. Int. J. Parasitol. 20, 489–496 (1990).

    Article  CAS  Google Scholar 

  30. Faubert, G. Immune response to Giardia duodenalis. Clin. Microbiol. Rev. 13, 35–54, (2000).

    Article  CAS  Google Scholar 

  31. Müller, N. & von Allmen, N. Recent insights into the mucosal reactions associated with Giardia lamblia infections. Int. J. Parasitol. 35, 1339–1347 (2005).

    Article  Google Scholar 

  32. Nash, T.E., Merritt, J.W. Jr. & Conrad, J.T. Isolate and epitope variability in susceptibility of Giardia lamblia to intestinal proteases. Infect. Immun. 59, 1334–1340 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Singer, S.M. & Nash, T.E. The role of normal flora in Giardia lamblia infections in mice. J. Infect. Dis. 181, 1510–1512 (2000).

    Article  CAS  Google Scholar 

  34. Nash, T.E., Herrington, D.A., Levine, M.M., Conrad, J.T. & Merritt, J.W. Jr. Antigenic variation of Giardia lamblia in experimental human infections. J. Immunol. 144, 4362–4369 (1990).

    CAS  PubMed  Google Scholar 

  35. Anders, R.F., Roberts-Thomson, I.C. & Mitchell, G.F. Giardiasis in mice: analysis of humoral and cellular immune responses to Giardia muris. Parasite Immunol. 4, 47–57 (1982).

    Article  CAS  Google Scholar 

  36. Aggarwal, A. & Nash, T.E. Antigenic variation of Giardia lamblia in vivo. Infect. Immun. 56, 1420–1423 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Gottstein, B., Deplazes, P. & Tanner, I. In vitro synthesized immunoglobulin A from nu/+ and reconstituted nu/nu mice against a dominant surface antigen of Giardia lamblia. Parasitol. Res. 79, 644–648 (1993).

    Article  CAS  Google Scholar 

  38. Stäger, S., Gottstein, B., Sager, H., Jungi, T.W. & Muller, N. Influence of antibodies in mother's milk on antigenic variation of Giardia lamblia in the murine mother-offspring model of infection. Infect. Immun. 66, 1287–1292 (1998).

    PubMed  PubMed Central  Google Scholar 

  39. Byrd, L.G., Conrad, J.T. & Nash, T.E. Giardia lamblia infections in adult mice. Infect. Immun. 62, 3583–3585 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Bouza, M., Maciques, I., Torres, D. & Nunez, F.A. Giardia lamblia in Mongolian gerbils: characteristics of infection using different human isolates. Exp. Parasitol. 96, 43–46 (2000).

    Article  CAS  Google Scholar 

  41. Eckmann, L. Mucosal defences against Giardia. Parasite Immunol. 25, 259–270 (2003).

    Article  CAS  Google Scholar 

  42. Ropolo, A.S., Saura, A., Carranza, P.G. & Lujan, H.D. Identification of variant-specific surface proteins in Giardia muris trophozoites. Infect. Immun. 73, 5208–5211 (2005).

    Article  CAS  Google Scholar 

  43. Franzén, O. et al. Draft genome sequencing of Giardia intestinalis assemblage B isolate GS: is human giardiasis caused by two different species? PLoS Pathog. 5, e1000560 (2009).

    Article  Google Scholar 

  44. Dunn, L.A., Upcroft, J.A., Fowler, E.V., Matthews, B.S. & Upcroft, P. Orally administered Giardia duodenalis extracts enhance an antigen-specific antibody response. Infect. Immun. 69, 6503–6510 (2001).

    Article  CAS  Google Scholar 

  45. Heyworth, M.F. Relative susceptibility of Giardia muris trophozoites to killing by mouse antibodies of different isotypes. J. Parasitol. 78, 73–76 (1992).

    Article  CAS  Google Scholar 

  46. Belosevic, M. & Faubert, G.M. Lysis and immobilization of Giardia muris trophozoites in vitro by immune serum from susceptible and resistant mice. Parasite Immunol. 9, 11–19 (1987).

    Article  CAS  Google Scholar 

  47. Butscher, W.G. & Faubert, G.M. The therapeutic action of monoclonal antibodies against a surface glycoprotein of Giardia muris. Immunology 64, 175–180 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Hill, D.R., Burge, J.J. & Pearson, R.D. Susceptibility of Giardia lamblia trophozoites to the lethal effect of human serum. J. Immunol. 132, 2046–2052 (1984).

    CAS  PubMed  Google Scholar 

  49. Olson, M.E., Ceri, H. & Morck, D.W. Giardia vaccination. Parasitol. Today 16, 213–217 (2000).

    Article  CAS  Google Scholar 

  50. Olson, M.E., Morck, D.W. & Ceri, H. Preliminary data on the efficacy of a Giardia vaccine in puppies. Can. Vet. J. 38, 777–779 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Anderson, K.A. et al. Impact of Giardia vaccination on asymptomatic Giardia infections in dogs at a research facility. Can. Vet. J. 45, 924–930 (2004).

    PubMed  PubMed Central  Google Scholar 

  52. Uehlinger, F.D. et al. Efficacy of vaccination in preventing giardiasis in calves. Vet. Parasitol. 146, 182–188 (2007).

    Article  Google Scholar 

  53. Mann, J.F., Acevedo, R., Campo, J.D., Perez, O. & Ferro, V.A. Delivery systems: a vaccine strategy for overcoming mucosal tolerance? Expert Rev. Vaccines 8, 103–112 (2009).

    Article  Google Scholar 

  54. Tonkin, C.J. et al. Sir2 paralogues cooperate to regulate virulence genes and antigenic variation in Plasmodium falciparum. PLoS Biol. 7, e84 (2009).

    Article  Google Scholar 

  55. Carranza, P.G. et al. Simultaneous expression of different variant-specific surface proteins in single Giardia lamblia trophozoites during encystation. Infect. Immun. 70, 5265–5268 (2002).

    Article  CAS  Google Scholar 

  56. Adam, R.D. et al. Antigenic variation of a cysteine-rich protein in Giardia lamblia. J. Exp. Med. 167, 109–118 (1988).

    Article  CAS  Google Scholar 

  57. Deng, M.Y. & Cliver, D.O. Degradation of Giardia lamblia cysts in mixed human and swine wastes. Appl. Environ. Microbiol. 58, 2368–2374 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Luján, H.D., Mowatt, M.R. & Wu, J.J. Lu, Y., Lees, A., Chance M.R. & Nash T.E. Purification of a variant-specific surface protein of Giardia lamblia and characterization of its metal-binding properties. J. Biol. Chem. 270, 13807–13813 (1995).

    Article  Google Scholar 

Download references

Acknowledgements

We thank T.E. Nash (National Institute of Allergy and Infectious Diseases, US National Institutes of Health) for providing VSP-specific mAbs and Giardia strains and M.E. Rivarola and the Pathology Service of the School of Medicine, Catholic University of Cordoba, for technical assistance. This work was supported by grants from the Agencia Nacional para la Promoción de la Ciencia y la Tecnología, Consejo Nacional de Investigaciones Científicas y Técnicas, Catholic University of Cordoba, the Howard Hughes Medical Institute and the EU CONTENT Project. H.D.L. is a Howard Hughes Medical Institute International Research Scholar and a Member of the Scientific Investigator's Career of the Consejo Nacional de Investigaciones Científicas y Técnicas.

Author information

Authors and Affiliations

Authors

Contributions

F.D.R. performed most of the gerbil and in vitro experiments; C.G.P. generated transgenic trophozoites and performed confocal and epifluorescence assays; A.S. and P.G.C. collaborated in gerbil experiments and developed monoclonal antibodies. A.T. collected and evaluated human samples. All authors analyzed the data. H.D.L. supervised the project and wrote the manuscript.

Corresponding author

Correspondence to Hugo D Lujan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Tables 1–7 (PDF 1106 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rivero, F., Saura, A., Prucca, C. et al. Disruption of antigenic variation is crucial for effective parasite vaccine. Nat Med 16, 551–557 (2010). https://doi.org/10.1038/nm.2141

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2141

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing