Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

Pleiotrophin regulates the expansion and regeneration of hematopoietic stem cells

Abstract

Hematopoietic stem cell (HSC) self-renewal is regulated by both intrinsic and extrinsic signals. Although some of the pathways that regulate HSC self-renewal have been uncovered, it remains largely unknown whether these pathways can be triggered by deliverable growth factors to induce HSC growth or regeneration. Here we show that pleiotrophin, a neurite outgrowth factor with no known function in hematopoiesis, efficiently promotes HSC expansion in vitro and HSC regeneration in vivo. Treatment of mouse bone marrow HSCs with pleiotrophin caused a marked increase in long-term repopulating HSC numbers in culture, as measured in competitive repopulating assays. Treatment of human cord blood CD34+CDCD38Lin cells with pleiotrophin also substantially increased severe combined immunodeficient (SCID)-repopulating cell counts in culture, compared to input and cytokine-treated cultures. Systemic administration of pleiotrophin to irradiated mice caused a pronounced expansion of bone marrow stem and progenitor cells in vivo, indicating that pleiotrophin is a regenerative growth factor for HSCs. Mechanistically, pleiotrophin activated phosphoinositide 3-kinase (PI3K) signaling in HSCs; antagonism of PI3K or Notch signaling inhibited pleiotrophin-mediated expansion of HSCs in culture. We identify the secreted growth factor pleiotrophin as a new regulator of both HSC expansion and regeneration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pleiotrophin is overexpressed by HUBECs, and treatment with pleiotrophin induces the expansion of phenotypic HSCs in culture.
Figure 2: Treatment with pleiotrophin induces the expansion of mouse short- and long-term HSCs.
Figure 3: Treatment with pleiotrophin induces the expansion of human HSCs.
Figure 4: Pleiotrophin mediates bone marrow progenitor cell expansion via activation of PI3K and Notch signaling.
Figure 5: Pleiotrophin induces bone marrow stem and progenitor cell regeneration in vivo.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Zon, L.I. Intrinsic and extrinsic control of haematopoietic stem-cell self-renewal. Nature 453, 306–313 (2008).

    Article  CAS  Google Scholar 

  2. Orkin, S.H. & Zon, L.I. SnapShot: hematopoiesis. Cell 132, 712 (2008).

    Article  CAS  Google Scholar 

  3. Kiel, M.J. & Morrison, S.J. Uncertainty in the niches that maintain haematopoietic stem cells. Nat. Rev. Immunol. 8, 290–301 (2008).

    Article  CAS  Google Scholar 

  4. Varnum-Finney, B. et al. The Notch ligand, Jagged-1, influences the development of primitive hematopoietic precursor cells. Blood 91, 4084–4091 (1998).

    CAS  PubMed  Google Scholar 

  5. Stier, S., Cheng, T., Dombkowski, D., Carlesso, N. & Scadden, D.T. Notch1 activation increases hematopoietic stem cell self-renewal in vivo and favors lymphoid over myeloid lineage outcome. Blood 99, 2369–2378 (2002).

    Article  CAS  Google Scholar 

  6. Reya, T. et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 423, 409–414 (2003).

    Article  CAS  Google Scholar 

  7. Karlsson, G. et al. Smad4 is critical for self-renewal of hematopoietic stem cells. J. Exp. Med. 204, 467–474 (2007).

    Article  CAS  Google Scholar 

  8. Zhang, C.C. et al. Angiopoietin-like proteins stimulate ex vivo expansion of hematopoietic stem cells. Nat. Med. 12, 240–245 (2006).

    Article  Google Scholar 

  9. North, T.E. et al. Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature 447, 1007–1011 (2007).

    Article  CAS  Google Scholar 

  10. Hackney, J.A. et al. A molecular profile of a hematopoietic stem cell niche. Proc. Natl. Acad. Sci. USA 99, 13061–13066 (2002).

    Article  CAS  Google Scholar 

  11. Chute, J.P. et al. Ex vivo culture with human brain endothelial cells increases the SCID-repopulating capacity of adult human bone marrow. Blood 100, 4433–4439 (2002).

    Article  CAS  Google Scholar 

  12. Antonchuk, J., Sauvageau, G. & Humphries, R.K. HOXB4-induced expansion of adult hematopoietic stem cells ex vivo. Cell 109, 39–45 (2002).

    Article  CAS  Google Scholar 

  13. Blank, U., Karlsson, G. & Karlsson, S. Signaling pathways governing stem-cell fate. Blood 111, 492–503 (2008).

    Article  CAS  Google Scholar 

  14. Meng, K. et al. Pleiotrophin signals increased tyrosine phosphorylation of β-catenin through inactivation of the intrinsic catalytic activity of the receptor-type protein tyrosine phosphatase β/ζ. Proc. Natl. Acad. Sci. USA 97, 2603–2608 (2000).

    Article  CAS  Google Scholar 

  15. Stoica, G.E. et al. Identification of anaplastic lymphoma kinase as a receptor for the growth factor pleiotrophin. J. Biol. Chem. 276, 16772–16779 (2001).

    Article  CAS  Google Scholar 

  16. Landgraf, P., Wahle, P., Pape, H.C., Gundelfinger, E.D. & Kreutz, M.R. The survival-promoting peptide Y-P30 enhances binding of pleiotrophin to syndecan-2 and -3 and supports its neuritogenic activity. J. Biol. Chem. 283, 25036–25045 (2008).

    Article  CAS  Google Scholar 

  17. Perez-Pinera, P., Berenson, J.R. & Deuel, T.F. Pleiotrophin, a multifunctional angiogenic factor: mechanisms and pathways in normal and pathological angiogenesis. Curr. Opin. Hematol. 15, 210–214 (2008).

    Article  CAS  Google Scholar 

  18. Yeh, H.J., He, Y.Y., Xu, J., Hsu, C.Y. & Deuel, T.F. Upregulation of pleiotrophin gene expression in developing microvasculature, macrophages and astrocytes after acute ischemic brain injury. J. Neurosci. 18, 3699–3707 (1998).

    Article  CAS  Google Scholar 

  19. Chang, Y. et al. Secretion of pleiotrophin stimulates breast cancer progression through remodeling of the tumor microenvironment. Proc. Natl. Acad. Sci. USA 104, 10888–10893 (2007).

    Article  CAS  Google Scholar 

  20. Chute, J.P., Muramoto, G.G., Fung, J. & Oxford, C. Soluble factors elaborated by human brain endothelial cells induce the concomitant expansion of purified human bone marrow CD34+CDCD38 cells and SCID-repopulating cells. Blood 105, 576–583 (2005).

    Article  CAS  Google Scholar 

  21. Chute, J.P. et al. Transplantation of vascular endothelial cells mediates the hematopoietic recovery and survival of lethally irradiated mice. Blood 109, 2365–2372 (2007).

    Article  CAS  Google Scholar 

  22. Gottschling, S. et al. Human mesenchymal stromal cells regulate initial self-renewing divisions of hematopoietic progenitor cells by a β1-integrin–dependent mechanism. Stem Cells 25, 798–806 (2007).

    Article  CAS  Google Scholar 

  23. Salter, A.B. et al. Endothelial progenitor cell infusion induces hematopoietic stem cell reconstitution in vivo. Blood 113, 2104–2107 (2009).

    Article  CAS  Google Scholar 

  24. Goodell, M.A., Brose, K., Paradis, G., Conner, A. & Mulligan, R. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J. Exp. Med. 183, 1797–1806 (1996).

    Article  CAS  Google Scholar 

  25. Christopherson, K.W., Hangoc, G., Mantel, C. & Broxmeyer, H.E. Modulation of hematopoietic stem cell homing and engraftment by CD26. Science 305, 1000–1003 (2004).

    Article  CAS  Google Scholar 

  26. Deuel, T.F., Zhang, N., Yeh, H.J., Silos-Santiago, I. & Wang, Z.Y. Pleiotrophin: a cytokine with diverse functions and a novel signaling pathway. Arch. Biochem. Biophys. 397, 162–171 (2002).

    Article  CAS  Google Scholar 

  27. Souttou, B., Ahmad, S., Riegel, A.T. & Wellstein, A. Signal transduction pathways involved in the mitogenic activity of pleiotrophin. Implication of mitogen-activated protein kinase and phosphoinositide 3-kinase pathways. J. Biol. Chem. 272, 19588–19593 (1997).

    Article  CAS  Google Scholar 

  28. Gu, D. et al. The effect of pleiotrophin signaling on adipogenesis. FEBS Lett. 581, 382–388 (2007).

    Article  CAS  Google Scholar 

  29. Kunisato, A. et al. HES-1 preserves purified hematopoietic stem cells ex vivo and accumulates side population cells in vivo. Blood 101, 1777–1783 (2003).

    Article  CAS  Google Scholar 

  30. Calvi, L.M. et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425, 841–846 (2003).

    Article  CAS  Google Scholar 

  31. Palomero, T., Dominguez, M. & Ferrando, A.A. The role of the PTEN/AKT pathway in NOTCH1-induced leukemia. Cell Cycle 7, 965–970 (2008).

    Article  CAS  Google Scholar 

  32. Carracedo, A. & Pandolfi, P.P. The PTEN-PI3K pathway: of feedbacks and cross-talks. Oncogene 27, 5527–5541 (2008).

    Article  CAS  Google Scholar 

  33. Hooper, A.T. et al. Engraftment and reconstitution of hematopoiesis is dependent on VEGFR2-mediated regeneration of sinusoidal endothelial cells. Cell Stem Cell 4, 263–274 (2009).

    Article  CAS  Google Scholar 

  34. Congdon, K.L. et al. Activation of Wnt signaling in hematopoietic regeneration. Stem Cells 26, 1202–1210 (2008).

    Article  CAS  Google Scholar 

  35. Zhang, J. et al. PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature 441, 518–522 (2006).

    Article  CAS  Google Scholar 

  36. Miyamoto, K. et al. Foxo3a is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell 1, 101–112 (2007).

    Article  CAS  Google Scholar 

  37. Adams, G.B. et al. Therapeutic targeting of a stem cell niche. Nat. Biotechnol. 25, 238–243 (2007).

    Article  CAS  Google Scholar 

  38. Dressman, H. et al. Gene expression signatures that predict radiation exposure in mice and humans. PLoS Med. 4, e106 (2007).

    Article  Google Scholar 

  39. Chute, J.P. et al. Inhibition of aldehyde dehydrogenase and retinoid signaling induces the expansion of human hematopoietic stem cells. Proc. Natl. Acad. Sci. USA 103, 11707–11712 (2006).

    Article  CAS  Google Scholar 

  40. Dorrell, C., Gan, O., Hawley, R. & Dick, J. Expansion of human CB CD34+CD38 in ex vivo culture during retroviral transduction without a corresponding increase in SCID-repopulating cell frequency: dissocation of SRC function and phenotype. Blood 95, 102–110 (2000).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge J. Whitesides for assistance with cell sorting procedures. This work was supported in part by US National Institutes of Health grant AI067798 to J.P.C., H.A.H. is supported by a post-doctoral training grant from the Center for Biomolecular and Tissue Engineering, US National Institute of Biomedical Imaging and Bioengineering.

Author information

Authors and Affiliations

Authors

Contributions

H.A.H. designed and performed experiments, analyzed data and wrote the paper; G.G.M., P.D., S.K.M., J.L.R., P.D., A.B.S. and W.E.L. performed experiments; J.-T.C. guided the microarray analysis; T.R. and N.J.C. analyzed data and wrote the paper; J.P.C. designed the experiments, analyzed the data and wrote the paper.

Corresponding author

Correspondence to John P Chute.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figs. 1–5, Supplementary Tables 1 and 2 and Supplementary Methods (PDF 799 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Himburg, H., Muramoto, G., Daher, P. et al. Pleiotrophin regulates the expansion and regeneration of hematopoietic stem cells. Nat Med 16, 475–482 (2010). https://doi.org/10.1038/nm.2119

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2119

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing