Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Concerted action of cellular JNK and Pin1 restricts HIV-1 genome integration to activated CD4+ T lymphocytes


Long-standing evidence indicates that quiescent human peripheral blood T lymphocytes (PBLs) do not support efficient HIV infection. In resting PBLs, reverse transcription of viral RNA takes longer than in activated cells1, partially because formation of the late products of reverse transcription is decreased by RNA binding by apolipoprotein B mRNA–editing enzyme, catalytic polypeptide-like 3G (APOBEC3G)2. In a subsequent step, integration of the viral complementary DNA that is eventually formed is markedly impaired3,4. Here we show that cellular c-Jun N-terminal kinase (JNK), an enzyme that is not expressed in resting CD4+ T cells, regulates permissiveness to HIV-1 infection, and we unravel a new, sequential post-translational pathway of protein modification that regulates viral DNA integration. We found that, in activated T lymphocytes, viral integrase, which mediates HIV-1 cDNA integration into the host cell genome, is phosphorylated by JNK on a highly conserved serine residue in its core domain. Phosphorylated integrase, in turn, becomes a substrate for the cellular peptidyl prolyl-isomerase enzyme Pin1, which catalyzes a conformational modification of integrase. These concerted activities increase integrase stability and are required for efficient HIV-1 integration and infection. Lack of these modifications restricts viral infection in nonactivated, primary CD4+ T lymphocytes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Phosphorylation of HIV-1 integrase (IN) by cellular JNK is required for efficient HIV-1 infection and integration in primary human T lymphocytes.
Figure 2: Cellular prolyl-isomerase Pin1 binds phosphorylated HIV-1 integrase.
Figure 3: Pin1 controls HIV-1 integrase stability.
Figure 4: Pin1 inhibition and integrase Ser57 mutation impair HIV-1 integration.


  1. 1

    Zhou, Y., Zhang, H., Siliciano, J.D. & Siliciano, R.F. Kinetics of human immunodeficiency virus type 1 decay following entry into resting CD4+ T cells. J. Virol. 79, 2199–2210 (2005).

    CAS  Article  Google Scholar 

  2. 2

    Chiu, Y.L. et al. Cellular APOBEC3G restricts HIV-1 infection in resting CD4+ T cells. Nature 435, 108–114 (2005).

    CAS  Article  Google Scholar 

  3. 3

    Zack, J.A. et al. HIV-1 entry into quiescent primary lymphocytes: molecular analysis reveals a labile, latent viral structure. Cell 61, 213–222 (1990).

    CAS  Article  Google Scholar 

  4. 4

    Stevenson, M., Stanwick, T.L., Dempsey, M.P. & Lamonica, C.A. HIV-1 replication is controlled at the level of T cell activation and proviral integration. EMBO J. 9, 1551–1560 (1990).

    CAS  Article  Google Scholar 

  5. 5

    Weiss, A. & Littman, D.R. Signal transduction by lymphocyte antigen receptors. Cell 76, 263–274 (1994).

    CAS  Article  Google Scholar 

  6. 6

    Rincón, M., Flavell, R.A. & Davis, R.J. Signal transduction by MAP kinases in T lymphocytes. Oncogene 20, 2490–2497 (2001).

    Article  Google Scholar 

  7. 7

    Weiss, L. et al. Regulation of c-Jun NH2-terminal kinase (Jnk) gene expression during T cell activation. J. Exp. Med. 191, 139–146 (2000).

    CAS  Article  Google Scholar 

  8. 8

    Cereseto, A. et al. Acetylation of HIV-1 integrase by p300 regulates viral integration. EMBO J. 24, 3070–3081 (2005).

    CAS  Article  Google Scholar 

  9. 9

    Pierson, T.C. et al. Molecular characterization of preintegration latency in human immunodeficiency virus type 1 infection. J. Virol. 76, 8518–8531 (2002).

    CAS  Article  Google Scholar 

  10. 10

    Suzuki, Y. & Craigie, R. The road to chromatin—nuclear entry of retroviruses. Nat. Rev. Microbiol. 5, 187–196 (2007).

    CAS  Article  Google Scholar 

  11. 11

    Wiskerchen, M. & Muesing, M.A. Human immunodeficiency virus type 1 integrase: effects of mutations on viral ability to integrate, direct viral gene expression from unintegrated viral DNA templates and sustain viral propagation in primary cells. J. Virol. 69, 376–386 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Engelman, A., Englund, G., Orenstein, J.M., Martin, M.A. & Craigie, R. Multiple effects of mutations in human immunodeficiency virus type 1 integrase on viral replication. J. Virol. 69, 2729–2736 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Whitehurst, C.E., Boulton, T.G., Cobb, M.H. & Geppert, T.D. Extracellular signal-regulated kinases in T cells. Anti-CD3 and 4 β-phorbol 12-myristate 13-acetate-induced phosphorylation and activation. J. Immunol. 148, 3230–3237 (1992).

    CAS  PubMed  Google Scholar 

  14. 14

    Paolinelli, R., Mendoza-Maldonado, R., Cereseto, A. & Giacca, M. Acetylation by GCN5 regulates CDC6 phosphorylation in the S phase of the cell cycle. Nat. Struct. Mol. Biol. 16, 412–420 (2009).

    CAS  Article  Google Scholar 

  15. 15

    Lu, K.P. & Zhou, X.Z. The prolyl isomerase PIN1: a pivotal new twist in phosphorylation signalling and disease. Nat. Rev. Mol. Cell Biol. 8, 904–916 (2007).

    CAS  Article  Google Scholar 

  16. 16

    Zhou, X.Z. et al. Pin1-dependent prolyl isomerization regulates dephosphorylation of Cdc25C and tau proteins. Mol. Cell 6, 873–883 (2000).

    CAS  Article  Google Scholar 

  17. 17

    Stukenberg, P.T. & Kirschner, M.W. Pin1 acts catalytically to promote a conformational change in Cdc25. Mol. Cell 7, 1071–1083 (2001).

    CAS  Article  Google Scholar 

  18. 18

    Mantovani, F. et al. Pin1 links the activities of c-Abl and p300 in regulating p73 function. Mol. Cell 14, 625–636 (2004).

    CAS  Article  Google Scholar 

  19. 19

    Zacchi, P. et al. The prolyl isomerase Pin1 reveals a mechanism to control p53 functions after genotoxic insults. Nature 419, 853–857 (2002).

    CAS  Article  Google Scholar 

  20. 20

    Ryo, A. et al. Regulation of NF-κB signaling by Pin1-dependent prolyl isomerization and ubiquitin-mediated proteolysis of p65/RelA. Mol. Cell 12, 1413–1426 (2003).

    CAS  Article  Google Scholar 

  21. 21

    Ryo, A., Nakamura, M., Wulf, G., Liou, Y.C. & Lu, K.P. Pin1 regulates turnover and subcellular localization of β-catenin by inhibiting its interaction with APC. Nat. Cell Biol. 3, 793–801 (2001).

    CAS  Article  Google Scholar 

  22. 22

    Uchida, T. et al. Pin1 and Par14 peptidyl prolyl isomerase inhibitors block cell proliferation. Chem. Biol. 10, 15–24 (2003).

    CAS  Article  Google Scholar 

  23. 23

    Llano, M., Delgado, S., Vanegas, M. & Poeschla, E.M. Lens epithelium-derived growth factor/p75 prevents proteasomal degradation of HIV-1 integrase. J. Biol. Chem. 279, 55570–55577 (2004).

    CAS  Article  Google Scholar 

  24. 24

    Mousnier, A. et al. von Hippel Lindau binding protein 1–mediated degradation of integrase affects HIV-1 gene expression at a postintegration step. Proc. Natl. Acad. Sci. USA 104, 13615–13620 (2007).

    CAS  Article  Google Scholar 

  25. 25

    Bukrinsky, M.I., Stanwick, T.L., Dempsey, M.P. & Stevenson, M. Quiescent T lymphocytes as an inducible virus reservoir in HIV-1 infection. Science 254, 423–427 (1991).

    CAS  Article  Google Scholar 

  26. 26

    Chun, T.W. et al. Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature 387, 183–188 (1997).

    CAS  Article  Google Scholar 

  27. 27

    Eckstein, D.A. et al. HIV-1 actively replicates in naive CD4+ T cells residing within human lymphoid tissues. Immunity 15, 671–682 (2001).

    CAS  Article  Google Scholar 

  28. 28

    Zhang, Z. et al. Sexual transmission and propagation of SIV and HIV in resting and activated CD4+ T cells. Science 286, 1353–1357 (1999).

    CAS  Article  Google Scholar 

  29. 29

    Kreisberg, J.F., Yonemoto, W. & Greene, W.C. Endogenous factors enhance HIV infection of tissue naive CD4 T cells by stimulating high molecular mass APOBEC3G complex formation. J. Exp. Med. 203, 865–870 (2006).

    CAS  Article  Google Scholar 

  30. 30

    Yamashita, M. & Emerman, M. Retroviral infection of non-dividing cells: old and new perspectives. Virology 344, 88–93 (2006).

    CAS  Article  Google Scholar 

  31. 31

    Zhang, J., Scadden, D.T. & Crumpacker, C.S. Primitive hematopoietic cells resist HIV-1 infection via p21. J. Clin. Invest. 117, 473–481 (2007).

    CAS  Article  Google Scholar 

  32. 32

    Asada, M. et al. Apoptosis inhibitory activity of cytoplasmic p21(Cip1/WAF1) in monocytic differentiation. EMBO J. 18, 1223–1234 (1999).

    CAS  Article  Google Scholar 

  33. 33

    Schwartz, O., Marechal, V., Friguet, B., Arenzana-Seisdedos, F. & Heard, J.M. Antiviral activity of the proteasome on incoming human immunodeficiency virus type 1. J. Virol. 72, 3845–3850 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Santoni de Sio, F.R., Cascio, P., Zingale, A., Gasparini, M. & Naldini, L. Proteasome activity restricts lentiviral gene transfer into hematopoietic stem cells and is down-regulated by cytokines that enhance transduction. Blood 107, 4257–4265 (2006).

    CAS  Article  Google Scholar 

  35. 35

    Repnik, U., Knezevic, M. & Jeras, M. Simple and cost-effective isolation of monocytes from buffy coats. J. Immunol. Methods 278, 283–292 (2003).

    CAS  Article  Google Scholar 

  36. 36

    Tan, W., Zhu, K., Segal, D.J., Barbas, C.F. III & Chow, S.A. Fusion proteins consisting of human immunodeficiency virus type 1 integrase and the designed polydactyl zinc finger protein E2C direct integration of viral DNA into specific sites. J. Virol. 78, 1301–1313 (2004).

    CAS  Article  Google Scholar 

  37. 37

    Butler, S.L., Hansen, M.S. & Bushman, F.D. A quantitative assay for HIV DNA integration in vivo. Nat. Med. 7, 631–634 (2001).

    CAS  Article  Google Scholar 

  38. 38

    Todorovic, V. et al. Human origins of DNA replication selected from a library of nascent DNA. Mol. Cell 19, 567–575 (2005).

    CAS  Article  Google Scholar 

  39. 39

    Marzio, G., Tyagi, M., Gutierrez, M.I. & Giacca, M. HIV-1 Tat transactivator recruits p300 and CREB-binding protein histone acetyltransferases to the viral promoter. Proc. Natl. Acad. Sci. USA 95, 13519–13524 (1998).

    CAS  Article  Google Scholar 

Download references


We wish to thank A. Engelman (Dana-Farber Cancer Institute) for the pFlag-IN codon-optimized expression vector, L. Collavin (Laboratorio Nazionale CIB and University of Trieste) for the p-Cs2-JNK plasmid and F. Kirchhoff (Institute of Molecular Virology, Universitätsklinikum Ulm) for the HIV-2-Rod Luc clone. We are grateful to S. Kerbavcic for excellent editorial assistance and to M. Sturnega for the technical support in raising the rabbit phospho-integrase–specific antibody. This work was supported by grants from the Italian National Research Programme on AIDS of the Istituto Superiore di Sanità, Italy to M.G. and from the Associazione Italiana per la Ricerca sul Cancro to G.D.S.

Author information




L.M. conducted most of the experiments on integrase phosphorylation, Pin1 binding and HIV-1 infection; M.L. contributed to the HIV-1 infection studies and supervised part of the experiments; M.I.G. conducted the experiments on integrase stability, characterization of the phospho-integrase–specific antibody and in vitro integrase enzymatic activity; A.C. contributed to the integrase acetylation and phosphorylation studies; G.D.S supervised the integrase-Pin1 interaction studies; M.G. supervised the project and wrote the manuscript.

Corresponding authors

Correspondence to Marina Lusic or Mauro Giacca.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 (PDF 2139 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Manganaro, L., Lusic, M., Gutierrez, M. et al. Concerted action of cellular JNK and Pin1 restricts HIV-1 genome integration to activated CD4+ T lymphocytes. Nat Med 16, 329–333 (2010).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing